logo

Why Normal Distribution 📂Probability Distribution

Why Normal Distribution

Definition 1

skew_normal.gif

The probability distribution which has the following probability density function in terms of location ξR\xi \in \mathbb{R}, scale ω>0\omega > 0, and shape αR\alpha \in \mathbb{R} parameters is called the Skew Normal Distribution. f(x)=2ωϕ(xξω)Φ(αxξω)=2ω2πe(xξ)22ω2αxξω12πet22dt \begin{align*} f(x) =& {{ 2 } \over { \omega }} \phi \left( {{ x - \xi } \over { \omega }} \right) \Phi \left( \alpha {{ x - \xi } \over { \omega }} \right) \\ =& {{ 2 } \over { \omega \sqrt{2 \pi} }} e^{-{{ \left( x - \xi \right)^{2} } \over { 2 \omega^{2} }}} \int_{- \infty}^{\alpha {{ x - \xi } \over { \omega }}} {{ 1 } \over { \sqrt{2 \pi} }} e^{- {{ t^{2} } \over { 2 }}} dt \end{align*} Here, the two functions ϕ,Φ:RR\phi, \Phi : \mathbb{R} \to \mathbb{R} refer to the probability density function (pdf) and the cumulative distribution function (cdf) of the Standard Normal Distribution, respectively.

Description

The Skew Normal Distribution is, as the name suggests, a generalization of the Normal Distribution with a non-zero skewness 00. The translation is based on domestic journals2.

Code

Below is Julia code that visualizes how the probability density function of the Skew Normal Distribution changes according to α\alpha in an animated way.

using Distributions, Plots

→ = 0:0.1:5
← = reverse(→)
a1 = @animate for α ∈ [→; ←; -→; -←]
    SN = SkewNormal(0, 1, α)
    x = -3:0.01:3
    plot(x, pdf.(SN, x),
    ylim = (0, 0.8),
    lw = 2, color = :black,
    legend = :none, title = "pdf of Skew Normal Distribution with α = $(lpad(α, 4))")
end
gif(a1, string(@__DIR__) * "/skew_normal.gif")

  1. Figueiredo. (2013). The Skew-Normal Distribution in SPC. https://doi.org/10.57805/revstat.v11i1.128 ↩︎

  2. 장은진. (2021). 왜정규분포를 이용한 ROC 곡선에 대한 베이지안 모형. https://doi.org/10.7465/jkdi.2021.32.1.15 ↩︎