logo

Sphere's Moment of Inertia 📂Classical Mechanics

Sphere's Moment of Inertia

Formula

The moment of inertia of a sphere with radius aa and mass mm is as follows.

I=25ma2 I=\frac{2}{5}ma^{2}

Proof

The idea of finding the moment of inertia of a sphere is slightly different from other rigid bodies. The key idea is to think of the sphere as a sum of infinitely many discs, similar to the method of integration.

89.jpg

Adding up the moment of inertia of these infinitely many discs yields the moment of inertia of the sphere. The moment of inertia of a disc perpendicular to the axis of rotation is I=12mr2I = \dfrac{1}{2}mr^{2} (r=r= radius, m=m= mass), so the moment of inertia of the sphere can be determined as follows.

Isphere=dI=12r2dm I_{\text{sphere}} = \int dI = \int \frac{1}{2}r^{2} dm

10.jpg

Now, just calculate.

Iz=12r2dm=aa12x2ρπx2dz=aa12ρπx4dz=12ρπaa(a2z2)2dz=12ρπaa(a42a2z2+z4)dz=12ρπ[a4z23a2z3+15z5]aa=12ρπ(2a543a5+25a5)=ρπ(a523a5+15a5)=ρπ815a5 \begin{align*} I_{z} &= \int \frac{1}{2}r^{2}dm=\int_{-a}^{a} \frac{1}{2}x^{2} \rho\pi x^{2} dz \\ &= \int_{-a}^{a} \frac{1}{2}\rho\pi x^{4} dz \\ &= \frac{1}{2} \rho \pi\int_{-a}^{a} (a^{2}-z^{2})^{2}dz \\ &= \frac{1}{2} \rho\pi \int_{-a}^{a} (a^{4}-2a^{2}z^{2}+z^{4})dz \\ &= \frac{1}{2} \rho \pi \left[ a^{4}z-\frac{2}{3}a^{2}z^{3}+\frac{1}{5}z^{5} \right]_{-a}^{a} \\ &= \frac{1}{2} \rho \pi \left(2a^{5}-\frac{4}{3}a^{5}+\frac{2}{5}a^{5} \right) \\ &= \rho \pi \left(a^{5}-\frac{2}{3}a^{5}+\frac{1}{5}a^{5} \right) \\ &= \rho \pi \frac{8}{15}a^{5} \end{align*}

And since the mass of the sphere is m=ρπ43a3m = \rho \pi \dfrac{4}{3} a^{3}, substituting IzI_{z} gives the following.

Iz=ρπ815a5=(ρπ43a3)(25a2)=25ma2 I_{z} = \rho \pi \frac{8}{15} a^{5} = \left( \rho \pi \frac{4}{3}a^{3} \right) \left( \dfrac{2}{5}a^{2} \right) = \frac{2}{5}ma^{2}

Furthermore, since the sphere is symmetrical in all directions, we obtain the following result.

Ix=Iy=Iz I_{x} = I_{y} = I_{z}