logo

Likelihood Ratio Test Including Sufficient Statistic 📂Mathematical Statistics

Likelihood Ratio Test Including Sufficient Statistic

Theorem

Hypothesis Testing: H0:θΘ0H1:θΘ0c \begin{align*} H_{0} :& \theta \in \Theta_{0} \\ H_{1} :& \theta \in \Theta_{0}^{c} \end{align*}

Likelihood Ratio test statistic: λ(x):=supΘ0L(θx)supΘL(θx) \lambda \left( \mathbf{x} \right) := {{ \sup_{\Theta_{0}} L \left( \theta \mid \mathbf{x} \right) } \over { \sup_{\Theta} L \left( \theta \mid \mathbf{x} \right) }}

If T(X)T \left( \mathbf{X} \right) is a sufficient statistic for the parameter θ\theta, and

  • λ(t)\lambda^{\ast} (t) is a likelihood ratio test statistic dependent on TT
  • λ(x)\lambda (\mathbf{x}) is a likelihood ratio test statistic dependent on X\mathbf{X}

Then, for all xΩ\mathbf{x} \in \Omega in all sample spaces, λ(T(x))=λ(x)\lambda^{\ast} \left( T \left( \mathbf{x} \right) \right) = \lambda \left( \mathbf{x} \right) holds.

Explanation

This theorem allows us to revisit why a sufficient statistic was named as such. Accordingly, when conducting a likelihood ratio test, if there is a sufficient statistic, one can start with λ\lambda^{\ast} without considering other possibilities.

Proof 1

f(xθ)=g(tθ)h(x) f \left( \mathbf{x} \mid \theta \right) = g \left( t \mid \theta \right) h \left( \mathbf{x} \right)

According to the Neyman Factorization Theorem, the pdf or pmf of x\mathbf{x} , f(xθ)f \left( \mathbf{x} \mid \theta \right) can be represented as the pdf or pmf of TT , g(tθ)g \left( t \mid \theta \right) and a function h(x)h \left( \mathbf{x} \right) that does not depend on θ\theta as follows. λ(x)=supΘ0L(θx)supΘL(θx)=supΘ0f(xθ)supΘf(xθ)=supΘ0g(T(x)θ)h(x)supΘg(T(x)θ)h(x)T is sufficient=supΘ0g(T(x)θ)supΘg(T(x)θ)h doesn’t depend on θ=supΘ0L(θx)supΘL(θx)g is the pdf or pmf of T=λ(T(x)) \begin{align*} \lambda \left( \mathbf{x} \right) =& {{ \sup_{\Theta_{0}} L \left( \theta \mid \mathbf{x} \right) } \over { \sup_{\Theta} L \left( \theta \mid \mathbf{x} \right) }} \\ =& {{ \sup_{\Theta_{0}} f \left( \mathbf{x} \mid \theta \right) } \over { \sup_{\Theta} f \left( \mathbf{x} \mid \theta \right) }} \\ =& {{ \sup_{\Theta_{0}} g \left( T \left( \mathbf{x} \right) \mid \theta \right) h \left( \mathbf{x} \right) } \over { \sup_{\Theta} g \left( T \left( \mathbf{x} \right) \mid \theta \right) h \left( \mathbf{x} \right) }} & \because T \text{ is sufficient} \\ =& {{ \sup_{\Theta_{0}} g \left( T \left( \mathbf{x} \right) \mid \theta \right) } \over { \sup_{\Theta} g \left( T \left( \mathbf{x} \right) \mid \theta \right) }} & \because h \text{ doesn’t depend on } \theta \\ =& {{ \sup_{\Theta_{0}} L^{\ast} \left( \theta \mid \mathbf{x} \right) } \over { \sup_{\Theta} L^{\ast} \left( \theta \mid \mathbf{x} \right) }} & \because g \text{ is the pdf or pmf of } T \\ =& \lambda^{\ast} \left( T \left( \mathbf{x} \right) \right) \end{align*}


  1. Casella. (2001). Statistical Inference(2nd Edition): p377. ↩︎