logo

Proof of the Invariance Property of the Maximum Likelihood Estimator 📂Mathematical Statistics

Proof of the Invariance Property of the Maximum Likelihood Estimator

Theorem

The Maximum Likelihood Estimator (MLE) is invariant with respect to transformation of function. In other words, if θ^\hat{\theta} is the MLE of the parameter θ\theta, then for any function τ\tau, τ(θ^)\tau \left( \hat{\theta} \right) is also the MLE of τ(θ)\tau \left( \theta \right).

Proof 1

Let η:=τ(θ)\eta := \tau \left( \theta \right) and define a new function LL^{\ast} for the likelihood function L=L(θx)L = L \left( \theta | \mathbf{x} \right) as L(η^x)=L(τ1(η)x) L^{\ast} \left( \hat{\eta} | \mathbf{x} \right) = L^{\ast} \left( \tau^{-1} \left( \eta \right) | \mathbf{x} \right) .

If η^\hat{\eta} maximizes the function value of the likelihood function L(ηx)L^{\ast} \left( \eta | \mathbf{x} \right), L(η^x)=L(τ(θ^)x) L^{\ast} \left( \hat{\eta} | \mathbf{x} \right) = L^{\ast} \left( \tau \left( \hat{\theta} \right) | \mathbf{x} \right) then it suffices to show that L(η^x)=supηsup{θ:τ(θ)=η}L(θx)=supθL(θx)=L(θ^x)=sup{θ:τ(θ)=τ(θ^)}L(θx)=L(τ(θ^)x) \begin{align*} L^{\ast} \left( \hat{\eta} | \mathbf{x} \right) =& \sup_{\eta} \sup_{\left\{ \theta : \tau (\theta) = \eta \right\}} L \left( \theta | \mathbf{x} \right) \\ =& \sup_{\theta} L \left( \theta | \mathbf{x} \right) \\ =& L \left( \hat{\theta} | \mathbf{x} \right) \\ =& \sup_{\left\{ \theta : \tau (\theta) = \tau \left( \hat{\theta} \right) \right\}} L \left( \theta | \mathbf{x} \right) \\ =& L^{\ast} \left( \tau \left( \hat{\theta} \right) | \mathbf{x} \right) \end{align*} .

Here, the reason for considering sets like {θ:τ(θ)=η}\left\{ \theta : \tau (\theta) = \eta \right\} is because there is no guarantee that τ\tau is bijective. Of course, logically, one should not use expressions like τ1\tau^{-1} from the start, but it does not matter in the context of this theorem.


  1. Casella. (2001). Statistical Inference(2nd Edition): p320. ↩︎