logo

Scale Families 📂Mathematical Statistics

Scale Families

Definition

The cumulative distribution function FF is said to satisfy FσF_{\sigma} for all xx if Fσ(x)=F(x/σ)F_{\sigma} (x) = F \left( x / \sigma \right) holds.

{Fσ:σ>0}\left\{ F_{\sigma} : \sigma > 0 \right\} is called a Scale Family.

Example 1

Consider a random sample X1,,XnX_{1} , \cdots , X_{n} with parameter σ\sigma having a cumulative distribution function F1(x)=F(x/1)=F(x)F_{1} (x) = F ( x / 1) = F(x), then for the random sample Z1,,ZnZ_{1} , \cdots , Z_{n} we can express Xi=σZi X_{i} = \sigma Z_{i} in this manner. If a statistic of this sample is a function of only X1Xn,,Xn1Xn {{ X_{1} } \over { X_{n} }} , \cdots , {{ X_{n-1} } \over { X_{n} }} then it’s an auxiliary statistic. It necessarily follows, because regardless of the scale parameter σ\sigma, the ratios of that random sample will cancel each other out in numerator-denominator. Indeed, the joint cumulative distribution of these ratios F(y1,,yn;σ)=Pσ(X1Xny1,,Xn1Xnyn1)=Pσ(σZ1σZny1,,σZn1σZnyn1)=Pσ(Z1Zny1,,Zn1Znyn1) \begin{align*} F \left( y_{1} , \cdots , y_{n} ; \sigma \right) =& P_{\sigma} \left( {{ X_{1} } \over { X_{n} }} \le y_{1} , \cdots , {{ X_{n-1} } \over { X_{n} }} \le y_{n-1} \right) \\ =& P_{\sigma} \left( {{ \sigma Z_{1} } \over { \sigma Z_{n} }} \le y_{1} , \cdots , {{ \sigma Z_{n-1} } \over { \sigma Z_{n} }} \le y_{n-1} \right) \\ =& P_{\sigma} \left( {{ Z_{1} } \over { Z_{n} }} \le y_{1} , \cdots , {{ Z_{n-1} } \over { Z_{n} }} \le y_{n-1} \right) \end{align*} does not depend on σ\sigma.

See Also


  1. Casella. (2001). Statistical Inference(2nd Edition): p284. ↩︎