logo

Definition of Likelihood Function 📂Mathematical Statistics

Definition of Likelihood Function

Definition 1

Let’s denote the joint probability density function or probability mass function of a sample X:=(X1,,Xn)\mathbf{X} := \left( X_{1} , \cdots , X_{n} \right) as f(xθ)f(\mathbf{x}|\theta). When a realization x\mathbf{x} is given, regarding f(xθ)f(\mathbf{x}|\theta) as a function of θ\theta L(θx):=f(xθ) L \left( \theta | \mathbf{x} \right) := f \left( \mathbf{x} | \theta \right) is called the Likelihood Function.

Explanation

In the context of discussing maximum likelihood estimators, it is necessary for the sample to be iid, but when discussing the Likelihood Principle, it is perfectly fine to consider the random vector itself without specifically thinking about random variables.

If for the parameter θ\theta, two parameters θ1\theta_{1} and θ2\theta_{2} L(θ1x)L(θ2x) L \left( \theta_{1} | \mathbf{x} \right) \ge L \left( \theta_{2} | \mathbf{x} \right) then it is said that θ1\theta_{1} is more Plausible than θ2\theta_{2} regarding θ\theta.


  1. Casella. (2001). Statistical Inference(2nd Edition): p290. ↩︎