logo

Derivation of the F-distribution from the t-distribution 📂Probability Distribution

Derivation of the F-distribution from the t-distribution

Theorem 1

A random variable Xt(ν)X \sim t(\nu) that follows a t-distribution with degrees of freedom ν>0\nu > 0 is defined as YY, which follows an F-distribution F(1,ν)F (1,\nu). Y:=X2F(1,ν) Y := X^{2} \sim F (1,\nu)

Proof

Via Chi-Square Distribution

Xt(ν)X \sim t(\nu), which follows a standard normal distribution, and WW, which follows a chi-square distribution with degrees of freedom ν\nu, are related as X2=(ZW/ν)2=Z2/1W/ν,ZW X^{2} = \left( {{ Z } \over { \sqrt{W / \nu} }} \right)^{2} = {{ Z^{2} / 1 } \over { W / \nu }} \qquad , Z \perp W and, Z2Z^{2} follows a chi-square distribution with degrees of freedom 11. Since an F-distribution can be derived from two independent chi-square distributions, X2F(1,ν)X^{2} \sim F(1, \nu) follows.

Through Direct Deduction via Probability Density Function 2

Strategy: Direct deduction through the probability density function.

Definition of t-distribution: A t-distribution, which is a continuous probability distribution t(ν)t \left( \nu \right) with a probability density function as follows for degrees of freedom ν>0\nu > 0. f(x)=Γ(ν+12)νπΓ(ν2)(1+x2ν)ν+12,xR f(x) = {{ \Gamma \left( {{ \nu + 1 } \over { 2 }} \right) } \over { \sqrt{\nu \pi} \Gamma \left( {{ \nu } \over { 2 }} \right) }} \left( 1 + {{ x^{2} } \over { \nu }} \right)^{- {{ \nu + 1 } \over { 2 }}} \qquad ,x \in \mathbb{R}

Definition of F-distribution: An F-distribution, which is a continuous probability distribution F(r1,r2)F \left( r_{1} , r_{2} \right) with a probability density function as follows for degrees of freedom r1,r2>0r_{1}, r_{2} > 0. f(x)=1B(r1/2,r2/2)(r1r2)r1/2xr1/21(1+r1r2x)(r1+r2)/2,x(0,) f(x) = {{ 1 } \over { B \left( r_{1}/2 , r_{2} / 2 \right) }} \left( {{ r_{1} } \over { r_{2} }} \right)^{r_{1} / 2} x^{r_{1} / 2 - 1} \left( 1 + {{ r_{1} } \over { r_{2} }} x \right)^{-(r_{1} + r_{2}) / 2} \qquad , x \in (0, \infty)


Y=X2    Y=X \begin{align*} & Y = X^{2} \\ \implies & \sqrt{Y} = X \end{align*} and since λ(X):=X2\lambda (X) := X^{2} is not a bijective function, the support of XX is divided into x0x \ge 0 and x<0x < 0. The Jacobian is dy=2xdxdy = 2 x dx Therefore, the probability density function of YY, fYf_{Y}, will be calculated from fY(y)=k=12Γ(ν+12)νπΓ(ν2)(1+x2ν)ν+1212x=Γ(ν+12)νπΓ(ν2)(1+x2ν)ν+121x \begin{align*} f_{Y}(y) =& \sum_{k=1}^{2} {{ \Gamma \left( {{ \nu + 1 } \over { 2 }} \right) } \over { \sqrt{\nu \pi} \Gamma \left( {{ \nu } \over { 2 }} \right) }} \left( 1 + {{ x^{2} } \over { \nu }} \right)^{- {{ \nu + 1 } \over { 2 }}} \cdot \left| {{ 1 } \over { 2x }} \right| \\ =& {{ \Gamma \left( {{ \nu + 1 } \over { 2 }} \right) } \over { \sqrt{\nu \pi} \Gamma \left( {{ \nu } \over { 2 }} \right) }} \left( 1 + {{ x^{2} } \over { \nu }} \right)^{- {{ \nu + 1 } \over { 2 }}} \cdot {{ 1 } \over { x }} \end{align*}

Relation between the Beta Function and the Gamma Function: B(p,q)=Γ(p)Γ(q)Γ(p+q) B(p,q) = {{\Gamma (p) \Gamma (q)} \over {\Gamma (p+q) }}

According to Euler’s Reflection Formula, π=Γ(1/2)\sqrt{\pi} = \Gamma (1/2), and based on the abovementioned lemma, fY(y)=Γ(ν+12)Γ(1/2)Γ(ν2)1ν(1+x2ν)ν+12x1=Γ(ν+12)Γ(1/2)Γ(ν2)1νy1(1+yν)ν+12=1B(1/2,ν/2)(1ν)1/2y1/21(1+1νy)1+ν2 \begin{align*} f_{Y}(y) =& {{ \Gamma \left( {{ \nu + 1 } \over { 2 }} \right) } \over { \Gamma (1/2) \Gamma \left( {{ \nu } \over { 2 }} \right) }} {{ 1 } \over { \sqrt{\nu} }} \left( 1 + {{ x^{2} } \over { \nu }} \right)^{- {{ \nu + 1 } \over { 2 }}} x^{-1} \\ =& {{ \Gamma \left( {{ \nu + 1 } \over { 2 }} \right) } \over { \Gamma (1/2) \Gamma \left( {{ \nu } \over { 2 }} \right) }} {{ 1 } \over { \sqrt{\nu} }} \sqrt{y}^{-1} \left( 1 + {{ y } \over { \nu }} \right)^{- {{ \nu + 1 } \over { 2 }}} \\ =& {{ 1 } \over { B (1/2, \nu/2) }} \left( {{ 1 } \over { \nu }} \right)^{1/2} y^{1/2-1} \left( 1 + {{ 1 } \over { \nu }} y \right)^{- {{ 1 + \nu } \over { 2 }}} \end{align*}


  1. Casella. (2001). Statistical Inference(2nd Edition): p258. ↩︎

  2. http://www.math.wm.edu/~leemis/chart/UDR/PDFs/TF.pdf ↩︎