logo

Exponential Family of Probability Distributions 📂Mathematical Statistics

Exponential Family of Probability Distributions

Definition 1 2

If the probability mass function or probability density function of a probability distribution with parameter θ\theta can be expressed in terms of some functions p,K,H,q,h,c,wi,tip,K,H,q,h,c,w_{i},t_{i} as follows, it is said to belong to the Exponential Family or Exponential Class. f(x;θ)=exp(p(θ)K(x)+H(x)+q(θ))=h(x)c(θ)exp(i=1kwi(θ)ti(x)) \begin{align*} f \left( x ; \theta \right) =& \exp \left( p (\theta) K (x) + H(x) + q(\theta) \right) \\ =& h(x) c (\theta) \exp \left( \sum_{i=1}^{k} w_{i} (\theta) t_{i} (x) \right) \end{align*}

Description

It should be immediately apparent that the forms of the two equations in the definition are essentially the same.

Theorem

Ti(X1,,Xn):=j=1nti(Xj) T_{i} \left( X_{1} , \cdots , X_{n} \right) := \sum_{j=1}^{n} t_{i} \left( X_{j} \right) For a random sample {Xj}j=1n\left\{ X_{j} \right\}_{j=1}^{n} with distribution function f(x;θ)f (x;\theta), if a statistic T1,,TkT_{1} , \cdots , T_{k} is defined as above, then its joint probability density function can be expressed in terms of some function HH as follows. fT(u1,,uk;θ)=H(u1,,uk)[c(θ)]nexp(i=1kwi(θ)ui) f_{T} \left( u_{1} , \cdots , u_{k} ; \theta \right) = H \left( u_{1} , \cdots , u_{k} \right) \left[ c (\theta) \right]^{n} \exp \left( \sum_{i=1}^{k} w_{i} (\theta) u_{i} \right)

Example

Considering a Bernoulli trial with probability p(0,1)p \in (0,1), px(1p)1x=(p1p)x(1p)=(1p)exp(xlogp1p) \begin{align*} p^{x} (1-p)^{1-x} =& \left( {{ p } \over { 1-p }} \right)^{x} (1-p) \\ =& (1-p) \exp \left( x \log {{ p } \over { 1-p }} \right) \end{align*} it can be expressed as above, so the Bernoulli distribution belongs to the exponential family. A distribution repeated nn times, namely the binomial distribution, can be expressed in terms of the identity function tj(x)=id(x)=xt_{j}(x) = \text{id} (x) = x as T1=X1++Xn=j=1ntj(Xj) T_{1} = X_{1} + \cdots + X_{n} = \sum_{j=1}^{n} t_{j} \left( X_{j} \right) In fact, the binomial distribution can be expressed as follows. (nx)px(1p)nx=(nx)(p1p)x(1p)n=(1p)nexp(xlogp1p+log(nx)) \begin{align*} \binom{n}{x} p^{x} (1-p)^{n-x} =& \binom{n}{x} \left( {{ p } \over { 1-p }} \right)^{x} (1-p)^{n} \\ =& (1-p)^{n} \exp \left( x \log {{ p } \over { 1-p }} + \log \binom{n}{x} \right) \end{align*}

See Also


  1. Casella. (2001). Statistical Inference(2nd Edition): p217. ↩︎

  2. Hogg et al. (2013). Introduction to Mathematical Statistcs(7th Edition): p404. ↩︎