logo

Lambert Transformation 📂Stochastic Differential Equations

Lambert Transformation

Definition 1

dXt=f(t,Xt)dt+g(Xt)dWt d X_{t} = f \left( t , X_{t} \right) dt + g \left( X_{t} \right) d W_{t} Let’s assume that the diffusion gg is dependent only on XtX_{t} and independent of time tt, given the stochastic differential equation (SDE) as shown above. The transformation F:XtYtF : X_{t} \mapsto Y_{t} is called the Lamperti Transformation. Yt:=F(Xt)=1g(u)duu=Xt Y_{t} := F \left( X_{t} \right) = \left. \int {{ 1 } \over { g (u) }} du \right|_{u = X_{t}} The obtained {Yt}\left\{ Y_{t} \right\} is the solution of the transformed SDE with a unit diffusion as follows. dYt=[f(t,Xt)g(Xt)12g(Xt)x]dt+dWt d Y_{t} = \left[ {{ f \left( t, X_{t} \right) } \over { g \left( X_{t} \right) }} - {{ 1 } \over { 2 }} {{ \partial g \left( X_{t} \right) } \over { \partial x }} \right] dt + d W_{t}

Proof

It can be verified simply using the Itô’s lemma.

Itô’s lemma: Let’s assume the Itô process {Xt}t0\left\{ X_{t} \right\}_{t \ge 0} is given. dXt=udt+vdWt d X_{t} = u dt + v d W_{t} If we consider a function V(t,Xt)=VC2([0,)×R)V \left( t, X_{t} \right) = V \in C^{2} \left( [0,\infty) \times \mathbb{R} \right) and set Yt:=V(t,Xt)Y_{t} := V \left( t, X_{t} \right), then {Yt}\left\{ Y_{t} \right\} is also an Itô process, and the following holds. dYt=Vtdt+VxdXt+12Vxx(dXt)2=(Vt+Vxu+12Vxxv2)dt+VxvdWt \begin{align*} d Y_{t} =& V_{t} dt + V_{x} d X_{t} + {{ 1 } \over { 2 }} V_{xx} \left( d X_{t} \right)^{2} \\ =& \left( V_{t} + V_{x} u + {{ 1 } \over { 2 }} V_{xx} v^{2} \right) dt + V_{x} v d W_{t} \end{align*}

Explanation

The Lamperti transformation pushes complex nonlinear terms into the drift term and fixes the diffusion term to 11 in the original Itô process.

Example

dXt=μXtdt+σXtdt d X_{t} = \mu X_{t} dt + \sigma X_{t} dt Consider a geometric Brownian motion. Since f(x)=μxf(x) = \mu x and g(x)=σxg(x) = \sigma x, the Lamperti transformation is dYt=f(t,Xt)g(Xt)12g(Xt)xdt+dWt=μXtσXt12σdt+dWt=(μσ12σ)dt+dWt \begin{align*} d Y_{t} =& {{ f \left( t, X_{t} \right) } \over { g \left( X_{t} \right) }} - {{ 1 } \over { 2 }} {{ \partial g\left( X_{t} \right) } \over { \partial x }} dt + d W_{t} \\ =& {{ \mu X_{t} } \over { \sigma X_{t} }} - {{ 1 } \over { 2 }} \sigma dt + d W_{t} \\ =& \left( {{ \mu } \over { \sigma }} - {{ 1 } \over { 2 }} \sigma \right) dt + d W_{t} \end{align*} and its solution YtY_{t} is as follows. Yt=1g(u)duu=Xt=1σuduu=Xt=1σloguu=Xt=logXtσ \begin{align*} Y_{t} =& \left. \int {{ 1 } \over { g (u) }} du \right|_{u = X_{t}} \\ =& \left. \int {{ 1 } \over { \sigma u }} du \right|_{u = X_{t}} \\ =& \left. {{ 1 } \over { \sigma }} \log u \right|_{u = X_{t}} \\ =& {{ \log X_{t} } \over { \sigma }} \end{align*}


  1. Panik. (2017). Stochastic Differential Equations: An Introduction with Applications in Population Dynamics Modeling: p199, 231~232. ↩︎