logo

Ito Process 📂Stochastic Differential Equations

Ito Process

Definition 1

Given a probability space (Ω,F,P)( \Omega , \mathcal{F} , P) and a filtration {Ft}t0\left\{ \mathcal{F}_{t} \right\}_{t \ge 0}, suppose that a Wiener process {Wt}t0\left\{ W_{t} \right\}_{t \ge 0} is Ft\mathcal{F}_{t}-adapted, and for fL1[0,)f \in \mathcal{L}^{1} [0 , \infty) and gL2[0,)g \in \mathcal{L}^{2} [0 , \infty), we define a 11-dimensional continuous Ft\mathcal{F}_{t}-adapted stochastic process {Xt}t0\left\{ X_{t} \right\}_{t \ge 0} as a 11-dimensional Itô Process. X(t):=X0+0tf(s)ds+0tg(s)dWs X (t) := X_{0} + \int_{0}^{t} f(s) ds + \int_{0}^{t} g(s) d W_{s}


  • Lp(E)\mathcal{L}^{p} (E) is the Lebesgue space consisting of functions with domain EE.

Explanation

Normally, because there are many integral symbols, it is inconvenient to use the above definition as it is, so it is often expressed using Stochastic Differential. dX(t)=f(t)dt+g(t)dWt d X(t) = f(t) dt + g(t) d W_{t}

Generalization 2

Suppose a ij    Wi(t)Wji \ne j \implies W_{i} (t) \perp W_{j}-dimensional Brownian motion {Wt}t0:=(W1(t),,Wm(t))\left\{ \mathbf{W}_{t} \right\}_{t \ge 0} := \left( W_{1} (t) , \cdots , W_{m} (t) \right) is Ft\mathcal{F}_{t}-adapted f(t)=(f1(t),,fd(t))L1([0,)d)g(t)=[g11(t)g1m(t)gd1(t)gdm(t)]L2([0,)d×m) \begin{align*} \mathbf{f} (t) = \left( f_{1} (t) , \cdots , f_{d} (t) \right) \in & \mathcal{L}^{1} \left( [0, \infty)^{d} \right) \\ \mathbf{g} (t) = \begin{bmatrix} g_{11} (t) & \cdots & g_{1m} (t) \\ \vdots & \ddots & \vdots \\ g_{d1} (t) & \cdots & g_{dm} (t) \end{bmatrix} \in & \mathcal{L}^{2} \left( [0, \infty)^{d \times m} \right) \end{align*} For vector functions f:[0,)Rd\mathbf{f} : [0, \infty) \to \mathbb{R}^{d} and matrix functions g:[0,)Rd×m\mathbf{g} : [0, \infty) \to \mathbb{R}^{d \times m}, we define a dd-dimensional continuous Ft\mathcal{F}_{t}-adapted stochastic process {Xt}t0\left\{ \mathbf{X}_{t} \right\}_{t \ge 0} as a dd-dimensional Itô Process. X(t):=X0+0tf(s)ds+0tg(s)dWs \mathbf{X} (t) := \mathbf{X}_{0} + \int_{0}^{t} \mathbf{f}(s) ds + \int_{0}^{t} \mathbf{g}(s) d \mathbf{W}_{s} Of course, it can also be written in the form of the following stochastic differential. dX(t)=f(t)dt+g(t)dWt d \mathbf{X}(t) = \mathbf{f}(t) dt + \mathbf{g}(t) d \mathbf{W}_{t}


  1. Panik. (2017). Stochastic Differential Equations: An Introduction with Applications in Population Dynamics Modeling: p120. ↩︎

  2. Panik. (2017). Stochastic Differential Equations: An Introduction with Applications in Population Dynamics Modeling: p127. ↩︎