logo

Isometric Equality of Ito 📂Stochastic Differential Equations

Isometric Equality of Ito

Theorem 1

For all fm2[a,b]f \in m^{2}[a,b], the following equation holds. E[(abfdWt)2]=E[abf2dt] E \left[ \left( \int_{a}^{b} f d W_{t} \right)^{2} \right] = E \left[ \int_{a}^{b} f^{2} dt \right]

Explanation

While it is correct that the power outside of the integral sign 2^{2} crosses over, attention should also be paid to the change in the integrands dWtd W_{t} and dtdt.

Proof 1

Strategy: Since it suffices to show for sequences {ϕn}nN\left\{ \phi_{n} \right\}_{n \in \mathbb{N}} in elementary processes given the definition of Itô integration, it naturally generalizes to ϕnfm2\phi_{n} \to f \in m^{2}, it is enough to think only of the elementary processes ϕn\phi_{n}. Let’s fix one n0Nn_{0} \in \mathbb{N}, and set it as ϕ:=ϕn0\phi := \phi_{n_{0}}.


ϕ(t,ω):=j=0k1ej(ω)χ[tj,tj+1)(t),a=t0<<tk=b \phi (t, \omega) := \sum_{j=0}^{k-1} e_{j} (\omega) \chi_{[t_{j}, t_{j+1})} (t) \qquad , a = t_{0} < \cdots < t_{k} = b Let’s say a bounded elementary process ϕ\phi appears as above.

If we set as ΔWj:=Wtj+1Wtj\Delta W_{j} := W_{t_{j+1}} - W_{t_{j}} then since it is a Wiener process E[eiejΔWiΔWj]={0,if ijE[ej2](tj+1tj),if i=j E \left[ e_{i} e_{j} \Delta W_{i} \Delta W_{j} \right] = \begin{cases} 0 & , \text{if } i \ne j \\ E \left[ e_{j}^{2} \right] \cdot \left( t_{j+1} - t_{j} \right) & , \text{if } i = j \end{cases} Furthermore, if iji \ne j, then ΔWiΔWj\Delta W_{i} \perp \Delta W_{j} hence E[(abϕdWt)2]=i,jE[eiejΔWiΔWj]=jE[ej2](tj+1tj)=E[abϕ2dt] \begin{align*} E \left[ \left( \int_{a}^{b} \phi d W_{t} \right)^{2} \right] =& \sum_{i,j} E \left[ e_{i} e_{j} \Delta W_{i} \Delta W_{j} \right] \\ =& \sum_{j} E \left[ e_{j}^{2} \right] \left( t_{j+1} - t_{j} \right) \\ =& E \left[ \int_{a}^{b} \phi^{2} dt \right] \end{align*}


  1. Øksendal. (2003). Stochastic Differential Equations: An Introduction with Applications: p29. ↩︎ ↩︎