logo

Ito Calculus 📂Stochastic Differential Equations

Ito Calculus

Buildup

Before discussing stochastic integrals, it is crucial to define an essential probabilistic process called the Elementary Process. Elementary processes play a similar role to simple functions, which were necessary for defining the Lebesgue integral in [Measure Theory](../../categories/Measure Theory).

a=t0<t1<<tk=b a = t_{0} < t_{1} < \cdots < t_{k} = b Considering such a partition in the Natural Domain [a,b][a,b], an Elementary Process is defined as follows for indicator functions χ\chi and Ftj\mathcal{F}_{t_{j}}-measurable functions (random variables) eje_{j}: ϕ(t,ω):=j=0k1ej(ω)χ[tj,tj+1](t) \phi (t,\omega) := \sum_{j=0}^{k-1} e_{j} (\omega) \chi_{ \left[ t_{j} , t_{j+1} \right] } (t) Integrating this function with the Wiener Process W(t)W(t) can be thought of in the same vein as the Riemann Sum: abϕ(t,ω)dWt(ω)=j=0k1ej(ω)[Wtj+1Wtj](ω) \int_{a}^{b} \phi (t,\omega) d W_{t} (\omega) = \sum_{j=0}^{k-1} e_{j} (\omega) \left[ W_{t_{j+1}} - W_{t_{j}} \right] ( \omega ) Based on this, the following Stochastic Integral is defined.

Definition 1

The Itô Integral is defined as follows fm2[a,b]f \in m^{2} [a,b]. abf(t,ω)dWt(ω):=limnabϕn(t,ω)dWt(ω) \int_{a}^{b} f (t,\omega) d W_{t} (\omega) := \lim_{n \to \infty} \int_{a}^{b} \phi_{n} (t,\omega) d W_{t} (\omega) Here, the sequence {ϕn}nN\left\{ \phi_{n} \right\}_{n \in \mathbb{N}} is a sequence of elementary processes that satisfy the following: limnE[ab(f(t,ω)ϕn(t,ω))2dt]=0 \lim_{n \to \infty} E \left[ \int_{a}^{b} \left( f (t,\omega) - \phi_{n} (t,\omega) \right)^{2} dt \right] = 0

Explanation

In the definition, {ϕn}nN\left\{ \phi_{n} \right\}_{n \in \mathbb{N}} can be specifically chosen in any way as long as it satisfies condition E[fϕn]2dt0E \int [f-\phi_{n}]^{2} dt \to 0.

Basic Properties 2

Let us assume f,gm2[a,b]f, g \in m^{2} [a,b] and a given filtration {Ft}t0\left\{ \mathcal{F}_{t} \right\}_{t \ge 0}.

  • [1] Measurability: abfdWt=(abfdWt)(ω)\displaystyle \int_{a}^{b} f d W_{t} = \left( \int_{a}^{b} f d W_{t} \right) (\omega) is Fb\mathcal{F}_{b}-measurable.
  • [2] Linearity: For a constant cc, ab(cf+g)dWt=abcfdWt+abgdWt \int_{a}^{b} \left( c f + g \right) d W_{t} = \int_{a}^{b} c f d W_{t} + \int_{a}^{b} g d W_{t}
  • [3] Additivity: For a<c<ba < c < b, abfdWt=acfdWt+cbfdWt \int_{a}^{b} f d W_{t} = \int_{a}^{c} f d W_{t} + \int_{c}^{b} f d W_{t}
  • [4] Normality: If ff is independent with ωΩ\omega \in \Omega, in other words, if ff is deterministic abfdWtN(0,ab(f)2dt) \int_{a}^{b} f d W_{t} \sim N \left( 0, \int_{a}^{b} \left( f \right)^{2} dt \right)
  • [5] Bounded Random Variables: If ZZ is Fb\mathcal{F}_{b}-measurable, then Zfm2[a,b]Z f \in m^{2}[a,b] and the following holds: abZf(t)dWt=Zabf(t)dWt \int_{a}^{b} Z f (t) d W_{t} = Z \int_{a}^{b} f (t) d W_{t}
  • [6] Expectation: For the sub-sigma field Fa\mathcal{F}_{a} E[abfdWt]=E[abfdWtFa]=0 E \left[ \int_{a}^{b} f d W_{t} \right] = E \left[ \int_{a}^{b} f d W_{t} | \mathcal{F}_{a} \right] = 0 and, regarding f,gf,g, the following holds: E(abf(t)dWtabg(t)dWt)=E(abf(t)g(t)dWt) E \left( \int_{a}^{b} f(t) d W_{t} \int_{a}^{b} g(t) d W_{t} \right) = E \left( \int_{a}^{b} f(t) g(t) d W_{t} \right)
  • [7] Itô Isometry Equality: E(abfWt2)=E(abf2Wt) E \left( \left| \int_{a}^{b} f W_{t} \right|^{2} \right) = E \left( \int_{a}^{b} \left| f \right|^{2} W_{t} \right) This also applies to Conditional Expectations, satisfying the following: E(abfdWt2Fa)=E(abf2dWtFa)=abE(f2Fa)dWt E \left( \left| \int_{a}^{b} f d W_{t} \right|^{2} | \mathcal{F}_{a} \right) = E \left( \int_{a}^{b} \left| f \right|^{2} d W_{t} | \mathcal{F}_{a} \right) = \int_{a}^{b} E \left( \left| f \right|^{2} | \mathcal{F}_{a} \right) d W_{t}
  • [8] Let’s consider fm2f \in m^2 and {fn}nNm2\left\{ f_{n} \right\}_{n \in \mathbb{N}} \subset m^{2}. If nn \to \infty, then E[ab(fnf)2dt]0 E \left[ \int_{a}^{b} \left( f_{n} - f \right)^{2} dt \right] \to 0 it converges as per L2\mathcal{L}_{2} Convergence when nn \to \infty. abfnWtabfWt \int_{a}^{b} f_{n} W_{t} \to \int_{a}^{b} f W_{t}

  • Ft\mathcal{F}_{t} being a sub-sigma field of F\mathcal{F} means both are Sigma Fields of Ω\Omega, but FtF\mathcal{F}_{t} \subset \mathcal{F} applies.
  • ff being a Ft\mathcal{F}_{t}-measurable function means that for all Borel Sets BB([0,))B \in \mathcal{B}([0,\infty)), f1(B)Ftf^{-1} (B) \in \mathcal{F}_{t} applies.

  1. Øksendal. (2003). Stochastic Differential Equations: An Introduction with Applications: p29. ↩︎

  2. Panik. (2017). Stochastic Differential Equations: An Introduction with Applications in Population Dynamics Modeling: p118. ↩︎