logo

Proof of the Fundamental Theorem of Curves 📂Geometry

Proof of the Fundamental Theorem of Curves

Theorem 1

a,ba,b contains 00 as an interval. Let’s assume the following holds true:

  • (i): κ(s)>0\overline{\kappa}(s) > 0 is (a,b)(a,b) at C1C^{1}
  • (ii): τ(s)\overline{\tau}(s) is continuous at (a,b)(a,b)
  • (iii): x0\mathbf{x}_{0} is a fixed point of R3\mathbb{R}^{3}
  • (iv): {D,E,F}\left\{ D,E,F \right\} is the right-handed orthonormal basis of R3\mathbb{R}^{3}

Then there exists a unique C3C^{3} regular curve α:(a,b)R3\alpha : (a,b) \to \mathbb{R}^{3} that satisfies the conditions with the parameter being the arc length from α(0)\alpha (0): α(0)=(x0)T(0)=DN(0)=EB(0)=Fκ(s)=κ(s)τ(s)=τ(s) \begin{align*} \alpha (0) =& \left( \mathbf{x}_{0} \right) \\ T(0) =& D \\ N(0) =& E \\ B(0) =& F \\ \kappa (s) =& \overline{\kappa} (s) \\ \tau (s) =& \overline{\tau} (s) \end{align*}


Explanation

Fundamental Theorem of Curves is a powerful theorem which states that a curve in a 33-dimensional space can be determined by its curvature and torsion, showing that the following results are not mere coincidence:

  • If κ=0\kappa = 0, then it is a straight line.
  • If κ0,τ=0\kappa \ne 0 , \tau = 0, then it is a planar curve.
  • If κ/τ\kappa / \tau is constant, then it is a helix.
  • If τ=0\tau = 0 and κ>0\kappa > 0 are constant, then it is a circle.
  • If τ0\tau \ne 0 is constant and κ>0\kappa > 0 is constant, then it is a circular helix.

The name “fundamental theorem” is well-deserved as it guarantees both uniqueness and existence.

Proof

Picard’s Theorem: For an initial value problem of a system of first-order ordinary differential equations, a unique solution exists.

Frenet-Serret formulas: Given a unit speed curve α\alpha satisfying κ(s)0\kappa (s) \ne 0, T(s)=κ(s)N(s)N(s)=κ(s)T(s)+τ(s)B(s)B(s)=τ(s)N(s) \begin{align*} T^{\prime}(s) =& \kappa (s) N(s) \\ N^{\prime}(s) =& - \kappa (s) T(s) + \tau (s) B(s) \\ B^{\prime}(s) =& - \tau (s) N(s) \end{align*}


uj=i=13aij(s)ui(aij)=[0κ0κ0τ0τ0] \mathbf{u}_{j}^{\prime} = \sum_{i=1}^{3} a_{ij} (s) u_{i} \\ \left( a_{ij} \right) = \begin{bmatrix} 0 & \overline{\kappa} & 0 \\ -\overline{\kappa} & 0 & \overline{\tau} \\ 0 & \overline{\tau} & 0 \end{bmatrix}

Considering the above ODE system and applying Picard’s theorem, a unique solution uj(s)\mathbf{u}_{j}(s) that satisfies these conditions exists. u1(0)=Du2(0)=Eu3(0)=F \begin{align*} \mathbf{u}_{1} (0) =& D \\ \mathbf{u}_{2} (0) =& E \\ \mathbf{u}_{3} (0) =& F \end{align*} Next, we need to show that the solution satisfies our required conditions.


Step 1. ui(t)\mathbf{u}_{i}(t) are orthonormal.

Let pij:=<ui,uj>p_{ij} := \left< \mathbf{u}_{i}, \mathbf{u}_{j} \right>, pij=<ui,uj>+<ui,uj>=<k=13akiuk,uj>+<ui,k=13akjuk>=k=13akipkj+k=13akjpik \begin{align*} p_{ij}^{\prime} =& \left< \mathbf{u}_{i}^{\prime}, \mathbf{u}_{j} \right> + \left< \mathbf{u}_{i}, \mathbf{u}_{j}^{\prime} \right> \\ =& \left< \sum_{k=1}^{3} a_{ki} \mathbf{u}_{k} , \mathbf{u}_{j} \right> + \left< \mathbf{u}_{i}, \sum_{k=1}^{3} a_{kj} \mathbf{u}_{k} \right> \\ =& \sum_{k=1}^{3} a_{ki} p_{kj} + \sum_{k=1}^{3} a_{kj} p_{ik} \end{align*} Thus, pijp_{ij} is the unique solution to the differential equation with initial values given by Picard’s theorem, pij=k=13(akipkj+akjpik) p_{ij}^{\prime} = \sum_{k=1}^{3} \left( a_{ki} p_{kj} + a_{kj} p_{ik} \right) And t=0t = 0 becomes the Kronecker delta function pij(0)=δijp_{ij} (0) = \delta_{ij}. Meanwhile, k=13(akiδkj+akjδ)=aji+aij=0=δij \sum_{k=1}^{3} \left( a_{ki} \delta_{kj} + a_{kj} \delta_{} \right) = a_{ji} + a_{ij} = 0 = \delta_{ij}^{\prime} Thus, δij=pij\delta_{ij} = p_{ij} itself exists as the unique solution to the given differential equation. Therefore, we have: <ui,uj>=δij \left< \mathbf{u}_{i} , \mathbf{u}_{j} \right> = \delta_{ij}


Step 2. Regularity of the unit speed curve α\alpha

α(s):=x0+0su1(σ)dσ \alpha (s) := \mathbf{x}_{0} + \int_{0}^{s} \mathbf{u}_{1} (\sigma) d \sigma Regarding s(a,b)s \in (a,b), let α(s)\alpha (s) be as previously set. First differentiating once gives, according to the fundamental theorem of calculus, dαds=u1(s) {{ d \alpha } \over { ds }} = \mathbf{u}_{1} (s) Differentiating once more according to the initial differential equation gives, d2αds2=u1=κu2 {{ d^{2} \alpha } \over { ds^{2} }} = \mathbf{u}_{1}^{\prime} = \overline{\kappa} \mathbf{u}_{2} Since κ\overline{\kappa} and u2\mathbf{u}_{2} are differentiable by assumption, differentiating once more results in d3αds3=κu2+κu2=κu2+κ(κu1+τu3) {{ d^{3} \alpha } \over { ds^{3} }} = \overline{\kappa}^{\prime} \mathbf{u}_{2} + \overline{\kappa} \mathbf{u}_{2}^{\prime} = \overline{\kappa}^{\prime} \mathbf{u}_{2} + \overline{\kappa} \left( -\overline{\kappa} \mathbf{u}_{1} + \overline{\tau} \mathbf{u}_{3} \right) Since κ\overline{\kappa} and τ\overline{\tau} are continuous and ui\mathbf{u}_{i} are differentiable, they are continuous. Thus d3αds3{{ d^{3} \alpha } \over { ds^{3} }} is also continuous, thereby α\alpha is C3C^{3}. We have already seen in Step 1 that dαds=u1=1 \left| {{ d \alpha } \over { ds }} \right| = \left| \mathbf{u}_{1} \right| = 1 therefore, α\alpha is a unit speed curve.


Step 3. κ=κ,τ=τ,u1=T,u2=N,u3=B\overline{\kappa} = \kappa, \overline{\tau} = \tau, \mathbf{u}_{1} = T, \mathbf{u}_{2} = N, \mathbf{u}_{3} = B

Since α=u1\alpha^{\prime} = \mathbf{u}_{1}, it naturally follows that u1=T\mathbf{u}_{1} = T. According to the Frenet-Serret formulas, κN=T=u1=κu2 \kappa N = T^{\prime} = \mathbf{u}_{1}^{\prime} = \overline{\kappa} \mathbf{u}_{2} Since NN and u2\mathbf{u}_{2} are unit vectors and κ>0\overline{\kappa} > 0, κ=κ\overline{\kappa} = \kappa must hold, thus N=u2N = \mathbf{u}_{2}. Because {u1,u2,u3}\left\{ \mathbf{u}_{1} , \mathbf{u}_{2}, \mathbf{u}_{3} \right\} is an orthonormal basis of R3\mathbb{R}^{3}, [u1,u2,u3]=±1\left[ \mathbf{u}_{1} , \mathbf{u}_{2}, \mathbf{u}_{3} \right] = \pm 1 holds and from s=0s = 0, [D,E,F]=[u1,u2,u3]=±1 \left[ D, E, F \right] = \left[ \mathbf{u}_{1} , \mathbf{u}_{2}, \mathbf{u}_{3} \right] = \pm 1 the scalar triple product [u1,u2,u3]\left[ \mathbf{u}_{1} , \mathbf{u}_{2}, \mathbf{u}_{3} \right] is continuous[^2], thus it must always be [u1,u2,u3]=1 \left[ \mathbf{u}_{1} , \mathbf{u}_{2}, \mathbf{u}_{3} \right] = 1 Therefore, B=T×N=u1×u2=u3 B = T \times N = \mathbf{u}_{1} \times \mathbf{u}_{2} = \mathbf{u}_{3} Finally, once more applying the Frenet-Serret formulas, τN=B=u3=τu2 -\tau N = B^{\prime} = \mathbf{u}_{3}^{\prime} = - \overline{\tau} \mathbf{u}_{2} yields N=u2N = \mathbf{u}_{2}.


  1. Millman. (1977). Elements of Differential Geometry: p42. ↩︎