logo

Formulas for Curves on a Sphere 📂Geometry

Formulas for Curves on a Sphere

Formula 1

Let’s say a unit speed curve α:IR3\alpha : I \to \mathbb{R}^{3} is placed on a sphere with center mm and radius rr. That is, α(I)Sr,m={xR3:<xm,xm>=r2} \alpha (I) \subset S_{r,m} = \left\{ x \in \mathbb{R}^{3} : \left< x - m , x - m \right> = r^{2} \right\} then it follows that κ0\kappa \ne 0. If τ0\tau \ne 0, then with respect to ρ=1/κ\rho = 1/\kappa and σ=1/τ\sigma = 1 / \tau, αm=ρNρσB \alpha - m = - \rho N - \rho^{\prime} \sigma B and, arranging for the radius, r2=ρ2+(ρσ)2 r^{2} = \rho^{2} + \left( \rho^{\prime} \sigma \right)^{2}

Derivation

Lemma: In an nn-dimensional inner product space VV, if E={e1,,en}E = \left\{ e_{1} , \cdots , e_{n} \right\} is an orthogonal set, then EE form a basis of VV, and for all vVv \in V, v=k=1n<v,ek>ek v = \sum_{k=1}^{n} \left< v , e_{k} \right> e_{k}

Differentiation of Inner Products: <f,g>=<f,g>+<f,g>\left< f, g \right>^{\prime} = \left< f^{\prime}, g \right> + \left< f, g^{\prime} \right>

Frenet-Serret Formulas: If α\alpha is a unit speed curve with κ(s)0\kappa (s) \ne 0, T(s)=κ(s)N(s)N(s)=κ(s)T(s)+τ(s)B(s)B(s)=τ(s)N(s) \begin{align*} T^{\prime}(s) =& \kappa (s) N(s) \\ N^{\prime}(s) =& - \kappa (s) T(s) + \tau (s) B(s) \\ B^{\prime}(s) =& - \tau (s) N(s) \end{align*}


<α(s)m,α(s)m>=r2 \left< \alpha (s) - m , \alpha (s) - m \right> = r^{2} Differentiating, if r2r^{2} is constant and because of T=αT = \alpha^{\prime}, 0=2<T,α(s)m> \begin{equation} 0 = 2 \left< T , \alpha (s) - m \right> \label{1} \end{equation} After dividing both sides by 22 and differentiating once more, since α\alpha is a unit speed curve, according to the Frenet-Serret formula T=κNT^{\prime} = \kappa N, 0=<T,α(s)m>=<T,α(s)m>+<T,T>=<κN,α(s)m>+1 \begin{align*} 0 =& \left< T , \alpha (s) - m \right>^{\prime} \\ =& \left< T^{\prime} , \alpha (s) - m \right> + \left< T ,T \right> \\ =& \left< \kappa N , \alpha (s) - m \right> + 1 \end{align*} Arranging, κ<N,α(s)m>=1 \kappa \left< N, \alpha (s) - m \right> = -1 Expressing in terms of ρ=1/κ\rho = 1 / \kappa, <N,α(s)m>=1κ=ρ \begin{equation} \left< N, \alpha (s) - m \right> = - {{ 1 } \over { \kappa }} = - \rho \label{2} \end{equation} According to the lemma, α(s)m=<α(s)m,T>T+<α(s)m,N>N+<α(s)m,B>B=0ρN+<α(s)m,B>B(1),(2) \begin{align*} & \alpha (s) - m \\ =& \left< \alpha (s) - m , T \right> T + \left< \alpha (s) - m , N \right> N + \left< \alpha (s) - m , B \right> B & \\ =& 0 - \rho N + \left< \alpha (s) - m , B \right> B & \because (1), (2) \end{align*} Now, we only need to find <α(s)m,B>\left< \alpha (s) - m , B \right>. Differentiating both sides of (2)\eqref{2} gives, ρ=<N,α(s)m>=<N,α(s)m>+<N,T>=<κT+τB,α(s)m>+0=τ<B,α(s)m> \begin{align*} - \rho^{\prime} =& \left< N , \alpha (s) - m \right>^{\prime} \\ =& \left< N^{\prime} , \alpha (s) - m \right> + \left< N, T \right> \\ =& \left< -\kappa T + \tau B , \alpha (s) - m \right> + 0 \\ =& \tau \left< B , \alpha (s) - m \right> \end{align*} Expressing in terms of σ=1/τ\sigma = 1/\tau, <α(s)m,B>=ρτ=σρ \left< \alpha (s) - m , B \right> = - {{ \rho^{\prime} } \over { \tau }} = - \sigma \rho^{\prime} Lastly, we obtain the following: α(s)m=ρNσρB \alpha (s) - m = - \rho N - \sigma \rho^{\prime} B

The formula for r2r^{2} is derived as follows: r2=<α(s)m,α(s)m>=<ρNρσB,ρNρσB>=ρ2<N,N>2+2ρρσ<N,B>+(ρσ)2<B,B>2=ρ21+2ρρσ0+(ρσ)2=ρ2+(ρσ)2 \begin{align*} r^{2} =& \left< \alpha (s) - m , \alpha (s) - m \right> \\ =& \left< -\rho N - \rho^{\prime} \sigma B , -\rho N - \rho^{\prime} \sigma B \right> \\ =& \rho^{2} \left< N, N \right>^{2} + 2 \rho \rho^{\prime} \sigma \left< N, B \right> + \left( \rho^{\prime} \sigma \right)^{2} \left< B, B \right>^{2} \\ =& \rho^{2} \cdot 1 + 2 \rho \rho^{\prime} \sigma \cdot 0 + \left( \rho^{\prime} \sigma \right)^{2} \\ =& \rho^{2} + \left( \rho^{\prime} \sigma \right)^{2} \end{align*}


  1. Millman. (1977). Elements of Differential Geometry: p34. ↩︎