logo

Lanczos Theorem Proof 📂Geometry

Lanczos Theorem Proof

Theorem 1

κ0\kappa \ne 0 for a given unit speed curve α\alpha being a helix is equivalent to it being a certain constant cRc \in \mathbb{R} for τ=cκ\tau = c \kappa.


Proof

Definition of a Helix: A regular curve α\alpha is called a helix if for some fixed unit vector u\mathbf{u}, <T,u>\left< T, \mathbf{u} \right> is a constant, and u\mathbf{u} is called the axis.

Auxiliary Lemma: In a nn-dimensional inner product space VV, if E={e1,,en}E = \left\{ e_{1} , \cdots , e_{n} \right\} is an orthogonal set, then EE is a basis of VV, and for all vVv \in V, v=k=1n<v,ek>ek v = \sum_{k=1}^{n} \left< v , e_{k} \right> e_{k}

Differentiation of Inner Products: <f,g>=<f,g>+<f,g>\left< f, g \right>^{\prime} = \left< f^{\prime}, g \right> + \left< f, g^{\prime} \right>

Frenet-Serret Formulas: If α\alpha is a κ(s)0\kappa (s) \ne 0 unit speed curve, then T(s)=κ(s)N(s)N(s)=κ(s)T(s)+τ(s)B(s)B(s)=τ(s)N(s) \begin{align*} T^{\prime}(s) =& \kappa (s) N(s) \\ N^{\prime}(s) =& - \kappa (s) T(s) + \tau (s) B(s) \\ B^{\prime}(s) =& - \tau (s) N(s) \end{align*}


(    )(\implies)

Since α\alpha is a helix, for some fixed axis u\mathbf{u}, <T,u>\left< T , \mathbf{u} \right> is constant. Let’s express this specifically for a fixed angle θ\theta as follows. <T,u>=cosθ \left< T , \mathbf{u} \right> = \cos \theta If for nZn \in \mathbb{Z}, it holds that θ=nπ\theta = n \pi, then <T,u>=±1    T=±u \left< T , \mathbf{u} \right> = \pm 1 \implies T = \pm \mathbf{u} Thus, since TT is constant, α\alpha is a straight line, and since κ=0\kappa = 0, it contradicts our assumption, hence θnπ\theta \ne n \pi must be true.

±1cosθ=<T,u> \pm 1 \ne \cos \theta = \left< T, \mathbf{u} \right> We will use the differentiation of inner products in the above equation. Since u\mathbf{u} is constant, u=0\mathbf{u}^{\prime} = 0, and according to the Frenet-Serret formulas, 0=<T,u>=<T,u>+<T,u>=<κN,u>+<T,0>=κ<N,u> \begin{align*} 0 =& \left< T, \mathbf{u} \right>^{\prime} \\ =& \left< T^{\prime}, \mathbf{u} \right> + \left< T, \mathbf{u}^{\prime} \right> \\ =& \left< \kappa N, \mathbf{u} \right> + \left< T, 0 \right> \\ =& \kappa \left< N, \mathbf{u} \right> \end{align*} Assuming κ0\kappa \ne 0, it must be that <N,u>=0\left< N, \mathbf{u} \right> = 0. According to the auxiliary lemma, u=<u,T>T+<u,N>N+<u,B>B=cosθT+<u,B>B \begin{align} \mathbf{u} =& \left< \mathbf{u} , T \right> T + \left< \mathbf{u} , N \right> N + \left< \mathbf{u} , B \right> B \\ =& \cos \theta T + \left< \mathbf{u} , B \right> B \end{align} Squaring both sides gives T2=u=1|T|^{2} = \left| \mathbf{u} \right| = 1 and hence TB    <T,B>=0T \perp B \implies \left< T, B \right> =0, therefore 1=u2=cos2θT2+2cosθ<u,B><T,B>+<T,B>2=cos2θ+<u,B>2 \begin{align*} 1 =& \left| \mathbf{u} \right|^{2} \\ =& \cos^{2} \theta |T|^{2} + 2 \cos \theta \left< \mathbf{u} , B \right> \left< T, B \right> + \left< T, B \right>^{2} \\ =& \cos^{2} \theta + \left< \mathbf{u} , B \right>^{2} \end{align*} Since sin2+cos2=1\sin^{2} + \cos^{2} = 1, then <u,B>2=sin2θ \left< \mathbf{u} , B \right>^{2} = \sin^{2} \theta Going back to (2)(2), we eventually obtain the following. u=cosθT+sinθB \mathbf{u} = \cos \theta T +\sin \theta B Differentiating both sides according to the Frenet-Serret formulas, 0=u=cosθT+sinθB=cosθκN+sinθ(τN)=(κcosθτsinθ)N \begin{align*} 0 =& \mathbf{u}^{\prime} \\ =& \cos \theta T^{\prime} + \sin \theta B^{\prime} \\ =& \cos \theta \kappa N + \sin \theta (-\tau N) \\ =& \left( \kappa \cos \theta - \tau \sin \theta \right) N \end{align*} Since NN is not 00, κcosθτsinθ\kappa \cos \theta - \tau \sin \theta must be 00, and since θnπ\theta \ne n \pi, it cannot be sinθ0\sin \theta \ne 0. Therefore, κcosθsinθ=τ \kappa {{ \cos \theta } \over { \sin \theta }} = \tau Since θ\theta is a fixed value, it has been shown that torsion is represented as a constant multiple of curvature like τ=κcotθ\tau = \kappa \cot \theta.


(    )(\impliedby)

Let’s assume cc for some constant. For some 0<θ<π0 < \theta < \pi, let c:=cotθc := \cot \theta. τ=cotθκ \tau = \cot \theta \kappa Define the vector u\mathbf{u} as follows. u:=cosθT+sinθB \mathbf{u} := \cos \theta T + \sin \theta B Differentiating the left side according to the Frenet-Serret formulas, u=cosθT+sinθB=cosθκN+sinθ(τN)=(cosθκsinθτ)N=(cosθκsinθcosθsinθκ)N=0 \begin{align*} \mathbf{u}^{\prime} =& \cos \theta T^{\prime} + \sin \theta B^{\prime} \\ =& \cos \theta \kappa N + \sin \theta ( - \tau N) \\ =& \left( \cos \theta \kappa - \sin \theta \tau \right) N \\ =& \left( \cos \theta \kappa - \sin \theta {{ \cos \theta } \over { \sin \theta }} \kappa \right) N \\ =& 0 \end{align*} Therefore, u\mathbf{u} is constant, and since α\alpha is a unit speed curve, <T,u>=<T,cosθT+sinθB>=cosθ1+0 \left< T, \mathbf{u} \right> = \left< T, \cos \theta T + \sin \theta B \right> = \cos \theta \cdot 1 + 0 Therefore, <T,u>\left< T, \mathbf{u} \right> is constant and α\alpha is a helix.


  1. Millman. (1977). Elements of Differential Geometry: p32. ↩︎