logo

Conditions for a Curve to Lie in a Plane in Three-Dimensional Euclidean Space 📂Geometry

Conditions for a Curve to Lie in a Plane in Three-Dimensional Euclidean Space

Theorem 1

Given a unit speed curve κ0\kappa \ne 0, the following three are equivalent:

  • (a): α\alpha lies in a plane.
  • (b): BB is a constant.
  • (c): τ=0\tau = 0 holds.

Explanation

This is a corollary of the Frenet-Serret formulas, allowing us to understand why torsion is defined in such a bizarre way as τ:=<B,N>\tau := \left< B^{\prime}, N \right>.

Proof

Frenet-Serret Formulas: If α\alpha is a unit speed curve with κ(s)0\kappa (s) \ne 0, then T(s)=κ(s)N(s)N(s)=κ(s)T(s)+τ(s)B(s)B(s)=τ(s)N(s) \begin{align*} T^{\prime}(s) =& \kappa (s) N(s) \\ N^{\prime}(s) =& - \kappa (s) T(s) + \tau (s) B(s) \\ B^{\prime}(s) =& - \tau (s) N(s) \end{align*}


Part 1. (b)    (c)(b) \implies (c)

Since BB is a constant, B=0B^{\prime} = \mathbf{0}, and by the Frenet-Serret formulas, τ=<B,N>=0\tau = - \left< B^{\prime} , N \right> = \mathbf{0}.


Part 2. (c)    (b)(c) \implies (b)

If τ=0\tau = \mathbf{0}, then by the Frenet-Serret formulas, B=τN=0B^{\prime} = -\tau N = \mathbf{0}.


Part 3. (a)    (b)(a) \implies (b)

For convenience, assume α\alpha is on the xyxy-plane and appears as α(s)=(x(s),y(s),0)\alpha (s) = \left( x(s) , y(s) , 0 \right). T=α(s)=(x,y,0)N=T(s)κ(s)=1κ(x,y,0) T = \alpha^{\prime} (s) = \left( x^{\prime} , y^{\prime}, 0 \right) \\ N = {{ T^{\prime}(s) } \over { \kappa (s) }} = {{ 1 } \over { \kappa }} \left( x^{\prime \prime} , y^{\prime \prime} , 0 \right) Thus, B=T×N=1κ[e1e2e3xy0xy0]=1κ(0,0,κ)=(0,0,±1) B = T \times N = {{ 1 } \over { \kappa }} \begin{bmatrix} e_{1} & e_{2} & e_{3} \\ x^{\prime} & y^{\prime} & 0 \\ x^{\prime \prime} & y^{\prime \prime} & 0 \end{bmatrix} = {{ 1 } \over { \kappa }} ( 0, 0, \kappa ) = (0 , 0, \pm 1) i.e., BB is a constant. Though this is shown in the xyxy-plane, it can be generalized to all planes by merely changing the basis. Here, κ=xyxy\kappa = \left| x^{\prime} y^{\prime \prime} - x^{\prime \prime} y^{\prime} \right| is obtained through calculation2.


Part 4. (b)    (a)(b) \implies (a)

It suffices to show that for some vR3v \in \mathbb{R}^{3}, the following holds: <α(s)α(s0),v>=0 \left< \alpha (s) - \alpha \left( s_{0} \right) , v \right> = 0 For v=Bv = B, <α(s)α(s0),B>=<α(s),B>+<α(s)α(s0),B>=<T,B>+<α(s)α(s0),0>=0+0 \left< \alpha (s) - \alpha \left( s_{0} \right) , B \right>^{\prime} = \left< \alpha^{\prime}(s) , B \right> + \left< \alpha (s) - \alpha \left( s_{0} \right) , B^{\prime} \right> \\ = \left< T , B \right> + \left< \alpha (s) - \alpha \left( s_{0} \right) , 0 \right> \\ = 0 + 0 Therefore, <α(s)α(s0),B>\left< \alpha (s) - \alpha \left( s_{0} \right) , B \right> remains unchanged for all sIs \in I, and specifically, if we set s=s0s = s_{0}, then <α(s)α(s0),B>=0 \left< \alpha (s) - \alpha \left( s_{0} \right) , B \right> = 0


  1. Millman. (1977). Elements of Differential Geometry: p31. ↩︎

  2. https://math.stackexchange.com/a/3619498/459895 ↩︎