logo

Finding the Speed of Electromagnetic Light from Maxwell's Equations 📂Electrodynamics

Finding the Speed of Electromagnetic Light from Maxwell's Equations

Formulas

Vacuum Maxwell’s Equations

E=0B=0×E=Bt×B=μ0ϵ0Et \begin{align} \nabla \cdot \mathbf{E} &= 0 \\[1em] \nabla \cdot \mathbf{B} &= 0 \\[1em] \nabla \times \mathbf{E} &= -\frac{\partial \mathbf{B}}{\partial t} \\[1em] \nabla \times \mathbf{B} &= \mu_{0}\epsilon_{0}\frac{\partial \mathbf{E}}{\partial t} \end{align}

One-dimensional wave equation

2fx2=1v22ft2 \frac{\partial^2 f}{\partial x^2}=\frac{1}{v^2}\frac{\partial^2 f}{\partial t^2}

Three-dimensional wave equation

2f=1v22ft2 \nabla ^2 f = \frac{1}{v^2}\frac{\partial ^2 f}{\partial t^2}

Derivation

The goal is to derive a wave equation form from Maxwell’s equations, regarding E\mathbf{E} and B\mathbf{B}. By taking the curl of (3)(3),

×(×E)=×(Bt)=t(×B)=t(μ0ϵ0Et)=μ0ϵ02Et2 \begin{align*} \nabla \times (\nabla \times \mathbf{E}) &= \nabla \times \left( -\frac{\partial \mathbf{B}}{\partial t} \right) \\ &= -\frac{\partial }{\partial t} (\nabla \times \mathbf{B}) \\ &= -\frac{\partial}{\partial t} \left( \mu_{0}\epsilon_{0} \frac{\partial \mathbf{E}}{\partial t} \right) \\ &= -\mu_{0}\epsilon_{0}\frac{\partial ^2 \mathbf{E}}{\partial t^2} \end{align*}

The third equality holds by (4)(4). Similarly, by taking the curl of (4)(4),

×(×B)=×(μ0ϵ0Et)=μ0ϵ0t(×E)=μ0ϵ02Bt2 \begin{align*} \nabla \times (\nabla \times \mathbf{B}) &= \nabla \times \left( \mu_{0} \epsilon_{0} \frac{\partial \mathbf{E}}{\partial t} \right) \\ &= \mu_{0}\epsilon_{0} \frac{\partial }{\partial t}(\nabla \times \mathbf{E}) \\ &= -\mu_{0}\epsilon_{0} \frac {\partial ^2 \mathbf{B} }{\partial t^2} \end{align*}

And since ×(×A)=(A)2A\nabla \times (\nabla \times \mathbf{A}) = \nabla(\nabla \cdot \mathbf{A})-\nabla^2\mathbf{A},

×(×E)=(E)2E=μ0ϵ02Et2 \nabla \times (\nabla \times \mathbf{E}) = \nabla(\nabla \cdot \mathbf{E})-\nabla^2\mathbf{E}=-\mu_{0}\epsilon_{0}\frac{\partial ^2 \mathbf{E}}{\partial t^2}

×(×B)=(B)2B=μ0ϵ02Bt2 \nabla \times (\nabla \times \mathbf{B}) = \nabla(\nabla \cdot \mathbf{B})-\nabla^2\mathbf{B}=-\mu_{0}\epsilon_{0}\frac{\partial ^2 \mathbf{B}}{\partial t^2}

Finally, because of E=0\nabla \cdot \mathbf{E}=0, B=0\nabla \cdot \mathbf{B}=0,

2E=μ0ϵ02Et2 \nabla ^2 \mathbf{E} = \mu_{0}\epsilon_{0}\frac{\partial ^2 \mathbf{E}}{\partial t^2}

2B=μ0ϵ02Bt2 \nabla ^2 \mathbf{B} = \mu_{0}\epsilon_{0}\frac{\partial ^2 \mathbf{B}}{\partial t^2}

Now, from Maxwell’s equations, E\mathbf{E} and B\mathbf{B} are separated. It can be seen that it takes the form of a three-dimensional wave equation. Remarkably, the speed of electromagnetic waves is determined by 1v2=μ0ϵ0\dfrac{1}{v^2}=\mu_{0}\epsilon_{0} to be v=1μ0ϵ0=3.00×108m/sv=\dfrac{1}{\sqrt{\mu_{0}\epsilon_{0}}}=3.00\times 10^8 m/s, which is the same as the speed of light. Thus, it can be speculated that light is a type of electromagnetic wave, and its speed is constant.