logo

Commutator of Momentum and Position 📂Quantum Mechanics

Commutator of Momentum and Position

Formula

The commutator of position and momentum operator is given by the equation below.

[p,x]=i[x,p]=i \begin{align} [p, x] &= -\i \hbar \\ [x, p] &= \i \hbar \end{align}

This equation is termed the canonical commutation relation. The commutator of the square of position and momentum is as follows.

[x2,p]=2ix[p,x2]=2ix \begin{align} [x^{2}, p] &= 2 \i \hbar x \\ [p, x^{2}] &= -2 \i \hbar x \end{align}

Explanation

Since the momentum operator p=iddxp = \i\hbar \dfrac{d}{dx} is a differential operator, it commutes for different coordinates.

[x,py]=[x,pz]=[y,px]=[y,pz]=[z,px]=[z,py]=0 [x,p_{y}]=[x,p_{z}]=[y,p_{x}]=[y,p_{z}]=[z,p_{x}]=[z,p_{y}] = 0

This can be summarized as follows.

[xk,px]=iδk[pxk,x]=iδk [x_{k}, p_{x_{\ell}}] = \i \hbar \delta_{k\ell} \\[1em] [p_{x_{k}}, x_{\ell}] = - \i \hbar \delta_{k\ell}

Here, δk\delta_{k\ell} is the Kronecker delta.

Proof

Let DxD_{x} be the differential operator.

Dx:=ddx D_{x} := \frac{d}{dx}

And, we denote the derivative dfdx\dfrac{df}{dx} simply as follows.

fx=dfdx=Dxf f_{x} = \dfrac{df}{dx} = D_{x}f

(1),(2)(1), (2)

Since the momentum operator is p=iddx=iDxp=-\i \hbar \dfrac{d}{dx} = -\i \hbar D_{x}, the following is obtained.

[p,x]ψ=pxψxpψ=iDx(xψ)+ixDxψ=iψixψx+ixψx=iψ \begin{align*} [p, x] \psi &= px\psi - xp\psi \\ &= -\i \hbar D_{x} (x\psi) + \i \hbar x D_{x}\psi \\ &= -\i \hbar\psi - \i \hbar x \psi_{x} + \i \hbar x\psi_{x} \\ &= -\i \hbar \psi \end{align*}

Therefore,

[p,x]=i=i [p,x] = -\i\hbar= \dfrac{\hbar}{\i}

Also, since [x,p]=[p,x][x,p] = -[p, x],

[x,p]=[p,x]=i [x,p] = -[p,x] = \i \hbar

(3),(4)(3), (4)

[x2,p]ψ=x2pψpx2ψ=x2(iDxψ)+iDx(x2ψ)=ix2ψx+i2xψ+ix2ψx=2ixψ \begin{align*} [x^{2},p]\psi &= x^{2}p\psi-px^{2}\psi \\ &= x^{2}(-\i\hbar D_{x}\psi) + \i\hbar D_{x}(x^{2}\psi) \\ &= -\i\hbar x^{2}\psi_{x} + \i\hbar2x\psi + \i\hbar x^{2}\psi_{x} \\ &= 2\i\hbar x \psi \end{align*}

Therefore,

[x2,p]=2ix [x^{2},p] = 2 \i\hbar x


Due to the properties of commutators (4),

[AB,C]=A[B,C]+[A,C]B [ AB, C ] = A [ B, C ] + [ A, C ] B

It can be computed as follows due to the properties of commutators.

[x2,p]=x[x,p]+[x,p]x=xi+ix=2ix \begin{align*} [x^{2}, p] &= x[x,p] + [x,p]x \\ &= x \i \hbar +\i \hbar x \\ &= 2 \i \hbar x \end{align*}