Gradient, Divergence and Curl in Curvilinear Coordinates
📂Mathematical PhysicsGradient, Divergence and Curl in Curvilinear Coordinates
The del operator in the spherical coordinates is as follows.
∇=∂r∂r+r1∂θ∂θ+rsinθ1∂ϕ∂ϕ
Description
The del operator is not a vector, but for convenience, it is represented as above.
Gradient:
∇f=∂r∂fr^+r1∂θ∂fθ^+rsinθ1∂ϕ∂fϕ^
Divergence:
∇⋅F=r2sinθ1(∂r∂(r2sinθFr)+∂θ∂(rsinθFθ)+∂ϕ∂(rFϕ))=r21∂r∂(r2Fr)+rsinθ1∂θ∂(sinθFθ)+rsinθ1∂ϕ∂Fϕ
Curl:
∇×F=rsinθ1(∂θ∂(Fϕsinθ)−∂ϕ∂Fθ)r^+r1(sinθ1∂ϕ∂Fr−∂r∂(rFϕ))θ^+r1(∂r∂(rFθ)−∂θ∂Fr)ϕ^
Laplacian:
∇2f=r21∂r∂(r2∂r∂f)+r2sinθ1∂θ∂(sinθ∂θ∂f)+r2sin2θ1∂ϕ2∂2f