logo

Gradient, Divergence and Curl in Curvilinear Coordinates 📂Mathematical Physics

Gradient, Divergence and Curl in Curvilinear Coordinates

Formula

The del operator in the spherical coordinates is as follows.

=rr^+1rθθ^+1rsinθϕϕ^ \nabla = \dfrac{\partial}{\partial r} \widehat{\mathbf{r}} + \dfrac{1}{r}\dfrac{\partial}{\partial \theta} \widehat{\boldsymbol{\theta}} + \dfrac{1}{r\sin\theta}\dfrac{\partial}{\partial \phi} \widehat{\boldsymbol{\phi}}

Description

The del operator is not a vector, but for convenience, it is represented as above.

  • Gradient:

    f=frr^+1rfθθ^+1rsinθfϕϕ^ \nabla f= \frac{\partial f}{\partial r} \mathbf{\hat r} + \frac{1}{r}\frac{\partial f}{\partial \theta} \boldsymbol{\hat \theta} + \frac{1}{r\sin\theta}\frac{\partial f}{\partial \phi}\boldsymbol{\hat \phi}

  • Divergence:

    F=1r2sinθ((r2sinθFr)r+(rsinθFθ)θ+(rFϕ)ϕ)=1r2(r2Fr)r+1rsinθ(sinθFθ)θ+1rsinθFϕϕ \begin{align*} \nabla \cdot \mathbf{F} &= \frac{1}{r^{2}\sin\theta}\left( \frac{\partial (r^{2}\sin\theta F_{r})}{\partial r}+\frac{\partial (r\sin\theta F_{\theta})}{\partial \theta}+\frac{\partial (rF_{\phi})}{\partial \phi} \right) \\ &= \frac{1}{r^{2}}\frac{\partial (r^{2} F_{r})}{\partial r}+\frac{1}{r\sin\theta}\frac{\partial (\sin\theta F_{\theta})}{\partial \theta}+\frac{1}{r\sin\theta}\frac{\partial F_{\phi}}{\partial \phi} \end{align*}

  • Curl:

    ×F=1rsinθ((Fϕsinθ)θFθϕ)r^+1r(1sinθFrϕ(rFϕ)r)θ^+1r((rFθ)rFrθ)ϕ^ \nabla \times \mathbf{F} = \frac{1}{r\sin\theta}\left(\dfrac{\partial (F_{\phi} \sin\theta)}{\partial \theta} - \dfrac{\partial F_{\theta}}{\partial \phi} \right)\mathbf{\hat r} + \frac{1}{r}\left(\frac{1}{\sin\theta}\dfrac{\partial F_{r}}{\partial \phi} - \dfrac{\partial (r F_{\phi})}{\partial r} \right)\boldsymbol{\hat \theta} + \frac{1}{r}\left(\dfrac{\partial (r F_{\theta})}{\partial r} - \dfrac{\partial F_{r}}{\partial \theta} \right)\boldsymbol{\hat \phi}

  • Laplacian:

    2f=1r2r(r2fr)+1r2sinθθ(sinθfθ)+1r2sin2θ2fϕ2 \nabla ^{2}f = \frac{1}{r^{2}} \frac{ \partial }{ \partial r }\left(r^{2} \frac{ \partial f}{ \partial r} \right) + \frac{1}{r^{2}\sin\theta}\frac{ \partial }{ \partial \theta }\left( \sin \theta \frac{ \partial f}{ \partial \theta} \right)+\frac{1}{r^{2}\sin^{2}\theta} \frac{\partial ^{2} f}{\partial \phi^{2} }