logo

Curvilinear Coordinate System and the Del Operator 📂Mathematical Physics

Curvilinear Coordinate System and the Del Operator

Definition

In any curvilinear coordinate system where the coordinates are (q1,q2,q3)(q_{1}, q_{2}, q_{3}), the del operator is as follows.

=1h1q1q^1+1h2q2q^2+1h3q3q^3=131hiqiq^i \begin{align*} \nabla &= \dfrac{1}{h_{1}}\dfrac{\partial}{\partial q_{1}} \widehat{\mathbf{q}}_{1} + \dfrac{1}{h_{2}}\dfrac{\partial}{\partial q_{2}} \widehat{\mathbf{q}}_{2} + \dfrac{1}{h_{3}}\dfrac{\partial}{\partial q_{3}} \widehat{\mathbf{q}}_{3} \\ &= \sum\limits_{1}^{3} \dfrac{1}{h_{i}}\dfrac{\partial}{\partial q_{i}} \widehat{\mathbf{q}}_{i} \end{align*}

Here, hih_{i} represents the scale factor.

Description

The del operator is not a vector, but for convenience, it is represented as above.

Cartesian Coordinate System

In the Cartesian coordinate system, q1=xq_{1} = x, q2=yq_{2} = y, and q3=zq_{3} = z are used, and the scale factor is h1=h2=h3=1h_{1} = h_{2} = h_{3} = 1.

=xx^+yy^+zz^ \nabla = \dfrac{\partial}{\partial x} \widehat{\mathbf{x}} + \dfrac{\partial}{\partial y} \widehat{\mathbf{y}} + \dfrac{\partial}{\partial z} \widehat{\mathbf{z}}

Spherical Coordinate System

In the spherical coordinate system, q1=rq_{1} = r, q2=θq_{2} = \theta, and q3=ϕq_{3} = \phi are used, and the scale factors are h1=1h_{1} = 1, h2=rh_{2} = r, and h3=rsinθh_{3} = r\sin\theta.

=rr^+1rθθ^+1rsinθϕϕ^ \nabla = \dfrac{\partial}{\partial r} \widehat{\mathbf{r}} + \dfrac{1}{r}\dfrac{\partial}{\partial \theta} \widehat{\boldsymbol{\theta}} + \dfrac{1}{r\sin\theta}\dfrac{\partial}{\partial \phi} \widehat{\boldsymbol{\phi}}

Cylindrical Coordinate System

In the cylindrical coordinate system, q1=ρq_{1} = \rho, q2=ϕq_{2} = \phi, and q3=zq_{3} = z are used, and the scale factors are h1=1h_{1} = 1, h2=ρh_{2} = \rho, and h3=1h_{3} = 1.

=ρρ^+1ρϕϕ^+zz^ \nabla = \dfrac{\partial}{\partial \rho} \widehat{\boldsymbol{\rho}} + \dfrac{1}{\rho}\dfrac{\partial}{\partial \phi} \widehat{\boldsymbol{\phi}} + \dfrac{\partial}{\partial z} \widehat{\mathbf{z}}