logo

Derivatives of Inverse Trigonometric Functions 📂Functions

Derivatives of Inverse Trigonometric Functions

Formulas

Inverse trigonometric functionsderivatives are as follows.

ddxsin1x=11x2ddxcsc1x=1xx21ddxcos1x=11x2ddxsec1x=1xx21ddxtan1x=11+x2ddxcot1x=11+x2 \begin{align*} \dfrac{d}{dx} \sin ^{-1} x &= \dfrac{1}{\sqrt{1-x^2}} \qquad & \dfrac{d}{dx} \csc ^{-1} x &= -\dfrac{1}{x\sqrt{x^2-1}} \\ \dfrac{d}{dx} \cos ^{-1} x &= -\dfrac{1}{\sqrt{1-x^2}} \qquad & \dfrac{d}{dx} \sec ^{-1} x &= \dfrac{1}{x\sqrt{x^2-1}} \\ \dfrac{d}{dx} \tan ^{-1} x &= \dfrac{1}{1+x^2} \qquad & \dfrac{d}{dx} \cot ^{-1} x &= -\dfrac{1}{1+x^2} \end{align*}

Proof

Differentiation of trigonometric functions

ddxsinx=cosxddxcscx=cscxcotxddxcosx=sinxddxsecx=secxtanxddxtanx=sec2xddxcotx=csc2x \begin{align*} \dfrac{d}{dx} \sin x &= \cos x \qquad & \dfrac{d}{dx} \csc x &= -\csc x \cot x \\[1em] \dfrac{d}{dx} \cos x &= - \sin x \qquad & \dfrac{d}{dx} \sec x &= \sec x \tan x \\[1em] \dfrac{d}{dx} \tan x &= \sec^{2} x \qquad & \dfrac{d}{dx} \cot x &= -\csc^{2} x \end{align*}

(sin1)(\sin^{-1})^{\prime}, (cos1)(\cos^{-1})^{\prime}

Let’s denote it as y=sin1xy = \sin^{-1} x. Then siny=x\sin y = x and the range of yy is π2yπ2- \dfrac{\pi}{2} \le y \le \dfrac{\pi}{2}. Differentiating with respect to xx, by the chain rule, we get the following.

ddxsiny=(x)    ddysinyydx=1    cosydydx=1 \dfrac{d}{dx}\sin y = (x)^{\prime} \implies \dfrac{d}{dy}\sin y \cdot \dfrac{y}{dx} = 1 \implies \cos y \cdot \dfrac{dy}{dx} = 1

Therefore, we obtain the following.

dydx=1cosy=11sin2y \dfrac{dy}{dx} = \dfrac{1}{\cos y} = \dfrac{1}{\sqrt{1 - \sin^{2} y}}

But since it was siny=x\sin y = x,

dydx=11x2 \dfrac{dy}{dx} = \dfrac{1}{\sqrt{1 - x^{2}}}

ddxcos1x\dfrac{d}{dx} \cos ^{-1} x is obtained in the same way.

(tan1)(\tan^{-1})^{\prime}

Let’s denote it as y=tan1xy = \tan^{-1} x. Then tany=x\tan y = x and the range of yy is π2<y<π2-\dfrac{\pi}{2} \lt y \lt \dfrac{\pi}{2}. Differentiating with respect to xx, by the chain rule, we get the following.

ddxtany=(x)    ddytanyydx=1    sec2ydydx=1 \dfrac{d}{dx} \tan y = (x)^{\prime} \implies \dfrac{d}{dy} \tan y \cdot \dfrac{y}{dx} = 1 \implies \sec^{2} y \cdot \dfrac{dy}{dx} = 1

Therefore, we obtain the following.

dydx=1sec2y=11+tan2y \dfrac{dy}{dx} = \dfrac{1}{\sec^{2} y} = \dfrac{1}{1 + \tan^{2} y}

But since it was tany=x\tan y = x,

dydx=11+x2 \dfrac{dy}{dx} = \dfrac{1}{1 + x^{2}}

(csc1)(\csc^{-1})^{\prime}, (sec1)(\sec^{-1})^{\prime}

Let’s denote it as y=csc1xy = \csc^{-1} x. Then cscy=x\csc y = x and differentiating both sides with respect to xx, by the chain rule, we get the following.

ddxcscy=(x)    ddycscydydx=1    cscycotydydx=1 \dfrac{d}{dx} \csc y = (x)^{\prime} \implies \dfrac{d}{dy} \csc y \dfrac{dy}{dx} = 1 \implies -\csc y \cot y \dfrac{dy}{dx} = 1

Therefore, we obtain the following.

dydx=1cscycoty=sinytany \dfrac{dy}{dx} = -\dfrac{1}{\csc y \cot y} = - \sin y \tan y

But since it was cscy=x\csc y = x and siny=1x\sin y = \dfrac{1}{x}, it results in cosy=11x2=1xx21\cos y = \sqrt{1 - \dfrac{1}{x^{2}}} = \dfrac{1}{x}\sqrt{x^{2} - 1}. Therefore,

dydx=1xx21 \dfrac{dy}{dx} = -\dfrac{1}{x\sqrt{x^{2} - 1}}

(sec1x)(\sec ^{-1} x)^{\prime} is also obtained in the same way.

(cot1)(\cot^{-1})^{\prime}

Let’s denote it as y=cot1xy = \cot^{-1} x. Then coty=x\cot y = x and differentiating both sides with respect to xx, by the chain rule, we get the following.

ddxcoty=(x)    ddycotydydx=1    csc2ydydx=1 \dfrac{d}{dx} \cot y = (x)^{\prime} \implies \dfrac{d}{dy} \cot y \dfrac{dy}{dx} = 1 \implies -\csc^{2} y \dfrac{dy}{dx} = 1

Therefore, we obtain the following.

dydx=1csc2y=sin2y \dfrac{dy}{dx} = -\dfrac{1}{\csc^{2} y} = - \sin^{2}y

But since it was stated as coty=x\cot y = x,

cosysiny=x    cos2ysin2y=x2    1sin2ysin2y=x2 \dfrac{\cos y}{\sin y} = x \implies \dfrac{\cos^{2} y}{\sin^{2}y} = x^{2} \implies \dfrac{1 - \sin^{2}y}{\sin^{2}y} = x^{2}

Organizing with respect to sin2y\sin^{2}y, we get sin2y=11+x2\sin^{2}y = \dfrac{1}{1 + x^{2}}. Therefore,

dydx=11+x2 \dfrac{dy}{dx} = - \dfrac{1}{1 + x^{2}}