logo

Multivariate Random Variables Probability Convergence 📂Mathematical Statistics

Multivariate Random Variables Probability Convergence

Definition 1

pp-dimensional random vector X\mathbf{X} and a sequence of random vectors {Xn}\left\{ \mathbf{X}_{n} \right\} are said to converge in probability to nn \to \infty as Xn\mathbf{X}_{n} if they satisfy the following. It is denoted by XnPX\mathbf{X} _ {n} \overset{P}{\to} \mathbf{X}. ε>0,limnP[XnX<ε]=1 \forall \varepsilon > 0 , \lim_{n \to \infty} P \left[ \left\| \mathbf{X}_{n} - \mathbf{X} \right\| < \varepsilon \right] = 1


  • \| \cdot \| is defined as the Euclidean norm, defined by (x1,,xn)=x12++xn2\left\| \left( x_{1} , \cdots , x_{n} \right) \right\| = \sqrt{ x_{1}^{2} + \cdots + x_{n}^{2}}.

Theorem

Let us represent the pp-dimensional random vector as X=(X1,,Xp)\mathbf{X} = \left( X_{1} , \cdots , X_{p} \right). Then XnPX    XnkPXk,k=1,,p \mathbf{X}_{n} \overset{P}{\to} \mathbf{X} \iff X_{nk} \overset{P}{\to} X_{k} \qquad, \forall k = 1, \cdots, p

Proof

()(\Rightarrow)

Let XnPX\mathbf{X}_{n} \overset{P}{\to} \mathbf{X}. According to the definition of the Euclidean norm for ε>0\varepsilon > 0, εXnkXkXnkXk \varepsilon \le \left| X_{nk} - X_{k} \right| \le \left\| \mathbf{X}_{nk} - \mathbf{X}_{k} \right\| therefore, lim supnP[XnkXkε]lim supnP[XnkXkε]=0 \limsup_{n \to \infty} P \left[ \left| X_{nk} - X_{k} \right| \ge \varepsilon \right] \le \limsup_{n \to \infty} P \left[ \left\| \mathbf{X}_{nk} - \mathbf{X}_{k} \right\| \ge \varepsilon \right] = 0


()(\Leftarrow)

Let XnkPXk,k=1,,pX_{nk} \overset{P}{\to} X_{k} , \forall k = 1, \cdots, p. According to the definition of the Euclidean norm for ε>0\varepsilon > 0, εXnXk=1pXnkXk \varepsilon \le \left\| \mathbf{X}_{n} - \mathbf{X} \right\| \le \sum_{k=1}^{p} \left| X_{nk} - X_{k} \right| therefore, lim supnP[XnXε]lim supnP[XnkXkε]k=1plim supnP[XnkXkε]=0 \begin{align*} & \limsup_{n \to \infty} P \left[ \left\| \mathbf{X}_{n} - \mathbf{X} \right\| \ge \varepsilon \right] \\ \le & \limsup_{n \to \infty} P \left[ \left| X_{nk} - X_{k} \right| \ge \varepsilon \right] \\ \le & \sum_{k=1}^{p} \limsup_{n \to \infty} P \left[ \left| X_{nk} - X_{k} \right| \ge \varepsilon \right] \\ =& 0 \end{align*}

See Also


  1. Hogg et al. (2013). Introduction to Mathematical Statistics (7th Edition): p321. ↩︎