Geometric Series
📂Calculus Geometric Series Definition The following series is called a geometric series for a ≠ 0 a \ne 0 a = 0 .
a + a r + a r 2 + a r 3 + ⋯ = ∑ n = 0 ∞ a r n
a + ar + ar^{2} + ar^{3} + \cdots = \sum_{n=0}^{\infty} ar^{n}
a + a r + a r 2 + a r 3 + ⋯ = n = 0 ∑ ∞ a r n
Explanation It is the infinite sum of a geometric sequence with the first term a a a and the common ratio r r r . The ▷eq04
Definition The following series is called a geometric series for a ≠ 0 a \ne 0 a = 0 .
a + a r + a r 2 + a r 3 + ⋯ = ∑ n = 0 ∞ a r n
a + ar + ar^{2} + ar^{3} + \cdots = \sum_{n=0}^{\infty} ar^{n}
a + a r + a r 2 + a r 3 + ⋯ = n = 0 ∑ ∞ a r n
Explanation It is the infinite sum of a geometric sequence with the first term a a a and the common ratio r r r . The n n n th term is the geometric mean of the n − 1 n-1 n − 1 th term and the n + 2 n+2 n + 2 th term.
( a r n − 1 ) ( a r n + 1 ) = a r n
\sqrt{(ar^{n-1})(ar^{n+1})} = ar^{n}
( a r n − 1 ) ( a r n + 1 ) = a r n
Partial Sum The partial sum s n s_{n} s n is as follows .
s n = a ( 1 − r n ) 1 − r
s_{n} = \dfrac{a(1 - r^{n})}{1 - r}
s n = 1 − r a ( 1 − r n )
Convergence The geometric series ∑ a r n = a + a r + a r 2 + a r 3 + ⋯ \sum ar^{n} = a + ar + ar^{2} + ar^{3} + \cdots ∑ a r n = a + a r + a r 2 + a r 3 + ⋯ converges when ∣ r ∣ < 1 |r| \lt 1 ∣ r ∣ < 1 , and its value is
∑ n = 1 ∞ a r n = a 1 − r ( ∣ r ∣ < 1 )
\sum\limits_{n = 1}^{\infty} ar^{n} = \dfrac{a}{1 - r} \qquad (|r| \lt 1)
n = 1 ∑ ∞ a r n = 1 − r a ( ∣ r ∣ < 1 )
When ∣ r ∣ ≥ 1 |r| \ge 1 ∣ r ∣ ≥ 1 , it diverges.
Proof When ∣ r ∣ < 1 |r| \lt 1 ∣ r ∣ < 1 Since the limit of the geometric sequence is 0 0 0 ,
lim n → ∞ s n = lim n → ∞ a ( 1 − r n ) 1 − r = lim n → ∞ ( a 1 − r − a r n 1 − r ) = a 1 − r − a 1 − r lim n → ∞ r n = a 1 − r
\begin{align*}
\lim\limits_{n \to \infty} s_{n} = \lim\limits_{n \to \infty} \dfrac{a(1 - r^{n})}{1 - r} & = \lim\limits_{n \to \infty} \left( \dfrac{a}{1 - r} - \dfrac{ar^{n}}{1 - r} \right) \\
& = \dfrac{a}{1 - r} - \dfrac{a}{1 - r}\lim\limits_{n \to \infty} r^{n} \\
& = \dfrac{a}{1 - r}
\end{align*}
n → ∞ lim s n = n → ∞ lim 1 − r a ( 1 − r n ) = n → ∞ lim ( 1 − r a − 1 − r a r n ) = 1 − r a − 1 − r a n → ∞ lim r n = 1 − r a
■
When ∣ r ∣ ≥ 1 |r| \ge 1 ∣ r ∣ ≥ 1 In this case, { a r n } \{ ar^{n} \} { a r n } does not converge to 0 0 0 , and by the divergence test , it diverges.
■