logo

Divergence Test 📂Calculus

Divergence Test

Summary

If the series n=1an\sum\limits_{n = 1}^{\infty} a_{n} converges, then the sequence {an}\{a_{n}\} converges to 00. n=1an is convergent     limnan=0 \sum\limits_{n = 1}^{\infty} a_{n} \text{ is convergent } \implies \lim\limits_{n \to \infty} a_{n} = 0

Proof

Let the sum of the series be n=1an=s\sum\limits_{n = 1}^{\infty} a_{n} = s. That is, for the partial sum sns_{n}, it is limnsn=s\lim\limits_{n \to \infty} s_{n} = s. Then, since an=snsn1a_{n} = s_{n} - s_{n-1},

limnan=limn(snsn1)=limnsnlimnsn1=ss=0 \lim\limits_{n \to \infty} a_{n} = \lim\limits_{n \to \infty} (s_{n} - s_{n-1}) = \lim\limits_{n \to \infty} s_{n} - \lim\limits_{n \to \infty} s_{n-1} = s - s = 0

Explanation

The converse is not true. In other words, if the sequence {an}\{a_{n}\} converges to 00, it does not mean that the series n=1an\sum\limits_{n = 1}^{\infty} a_{n} converges. A well-known example is the harmonic series. The harmonic sequence {1n}\left\{ \dfrac{1}{n} \right\} converges to 00, but the harmonic series does not converge.

limn1n=0 but n=11n= \lim\limits_{n \to \infty} \dfrac{1}{n} = 0 \quad \text{ but } \quad \sum\limits_{n = 1}^{\infty} \dfrac{1}{n} = \infty

The contrapositive is the divergence test.

Divergence Test

If the sequence {an}\{a_{n}\} does not converge to 00, then the series n=1an\sum\limits_{n = 1}^{\infty} a_{n} diverges.