Derivation of the Laurent Expansion of the Riemann Zeta Function
📂FunctionsDerivation of the Laurent Expansion of the Riemann Zeta Function
Theorem
The Laurent expansion of the Riemann zeta function ζ is as follows:
ζ(s)=s−11+n=0∑∞γnn!(1−s)n,s>1
Here, γn is the nth Stieltjes constant, defined as follows:
γn:=m→∞limk=1∑m(k(logk)n−n+1(logm)n)
Description
In particular, the Stieltjes constants are γ0=γ for n=0, which is the Euler-Mascheroni constant.
According to this series expansion, the residue of ζ(1−s) is 1.
Derivation
ζm(s):=k=1∑m(k−s−1−sm1−s)
If we define ζm(s) as above, since ζ(s)=k∈N∑k−s, if s>1 then m→∞ when ζm(s)→ζ(s). By reversing the base and exponent on the right side and performing a Taylor expansion about the exponential function ex=n=0∑∞n!xn, we obtain
=======ζm(s)+0k=1∑m(k−s−1−sm1−s)+(1−s1−1−s1)s−11+k=1∑m[k−s−1−sm1−s−1]s−11+k=1∑m[k1k1−s−1−se(1−s)logm−1]s−11+k=1∑m[k1e(1−s)logk−1−s1+∑n=0∞[(1−s)logm]n+1−1]s−11+n=0∑∞[k=1∑m(k1n![(1−s)logk]n−1−s1(n+1)![(1−s)logm]n+1)]s−11+n=0∑∞[k=1∑m(k1n!(1−s)n[logk]n−(n+1)!(1−s)n[logm]n+1)]s−11+n=0∑∞n!(1−s)n[k=1∑m(k[logk]n−n+1[logm]n+1)]
which falls out neatly. Now, by taking m→∞ if s>1, we get the following:
s−11+n=0∑∞γnn!(1−s)n=m→∞limζm(s)=ζ(s)
■