logo

Alternating Series Test 📂Calculus

Alternating Series Test

Summary1

The alternating series satisfying the following conditions n=1(1)n1bn\sum\limits_{n = 1}^{\infty} (-1)^{n-1}b_{n} (bn>0)(b_{n} \gt 0) converges.

  1. bn+1bnnb_{n+1} \le b_{n} \quad \forall n.
  2. limnbn=0\lim\limits_{n \to \infty} b_{n} = 0.

Proof

First, consider the partial sum up to the even terms.

s2=b1b20s4=s2+(b3b4)s2s6=s4+(b5b6)s4s2n=s2n2+(b2n1b2n)s2n2 \begin{align*} s_{2} &= b_{1} - b_{2} \ge 0 \\ s_{4} &= s_{2} + (b_{3} - b_{4}) \ge s_{2} \\ s_{6} &= s_{4} + (b_{5} - b_{6}) \ge s_{4} \\ &\quad \vdots \\ s_{2n} &= s_{2n-2} + (b_{2n-1} - b_{2n}) \ge s_{2n-2} \end{align*}

Therefore, the following holds.

0s2s4s2n 0 \le s_{2} \le s_{4} \le \cdots \le s_{2n} \le \cdots

Meanwhile, s2ns_{2n} can be written as follows.

s2n=b1(b2b3)(b4b5)(b2n2b2n1)b2n s_{2n} = b_{1} - (b_{2} - b_{3}) - (b_{4} - b_{5}) - \cdots - (b_{2n-2} - b_{2n-1}) - b_{2n}

Since all terms inside the parentheses and b2nb_{2n} are positive, s2n<b1s_{2n} \lt b_{1} holds for all nn. That is, it is bounded above. Given that a monotonic and bounded sequence converges, s2ns_{2n} converges.

limns2n=s \lim\limits_{n \to \infty} s_{2n} = s

Now, considering the partial sum up to the odd terms, it can be seen that it converges to ss as follows.

limns2n+1=limns2n+b2n+1=limns2n+limnb2n+1=s+0=s \begin{align*} \lim\limits_{n \to \infty} s_{2n + 1} &= \lim\limits_{n \to \infty} s_{2n} + b_{2n + 1} \\ &= \lim\limits_{n \to \infty} s_{2n} + \lim\limits_{n \to \infty} b_{2n + 1} \\ &= s + 0 \\ &= s \end{align*}

Lemma

If limna2n=L\lim\limits_{n \to \infty} a_{2n} = L and limna2n+1=L\lim\limits_{n \to \infty} a_{2n+1} = L, then limnan=L\lim\limits_{n \to \infty} a_{n} = L.

By the lemma above, it is n=1sn=s\sum\limits_{n = 1}^{\infty} s_{n} = s. That is, the series n=1(1)n1bn\sum\limits_{n = 1}^{\infty} (-1)^{n-1}b_{n} converges.


  1. James Stewart, Daniel Clegg, and Saleem Watson, Calculus (early transcendentals, 9E), p766-769 ↩︎