Orthogonality, Orthogonal Sets, and Orthonormal Sets in Inner Product Spaces
📂Hilbert Space Orthogonality, Orthogonal Sets, and Orthonormal Sets in Inner Product Spaces Definition Let ( X , ⟨ ⋅ , ⋅ ⟩ ) \left( X, \left\langle \cdot, \cdot \right\rangle \right) ( X , ⟨ ⋅ , ⋅ ⟩ ) be an inner product space . If two elements x , y ∈ X \mathbf{x}, \mathbf{y}\in X x , y ∈ X satisfy ⟨ x , y ⟩ = 0 \left\langle \mathbf{x}, \mathbf{y} \right\rangle =0 ⟨ x , y ⟩ = 0 , then y \mathbf{y} y and x \mathbf{x} x are said to be orthogonal and denoted as follows.
x ⊥ y
\mathbf{x} \perp \mathbf{y}
x ⊥ y
If the set of elements X X X , { x k } k ∈ N \left\{ \mathbf{x}_{k} \right\}_{k\in \mathbb{N}} { x k } k ∈ N , satisfies the following equation, it is called an orthogonal system or an orthogonal set .
⟨ x k , x ℓ ⟩ = 0 ∀ k ≠ ℓ
\left\langle \mathbf{x}_{k}, \mathbf{x}_{\ell} \right\rangle =0\quad \forall k\ne \ell
⟨ x k , x ℓ ⟩ = 0 ∀ k = ℓ
If the orthogonal system { x k } k ∈ N \left\{ \mathbf{x}_{k} \right\}_{k\in \mathbb{N}} { x k } k ∈ N satisfies the following equation, it is called an orthonormal system or an orthonormal set .
∥ x k ∥ = 1 ∀ k ∈ N
\left\| \mathbf{x}_{k} \right\| =1\quad \forall k\in \mathbb{N}
∥ x k ∥ = 1 ∀ k ∈ N
Explanation In an inner product space , since the norm is defined as ∥ ⋅ ∥ : = ⟨ ⋅ , ⋅ ⟩ \left\| \cdot \right\|:=\sqrt{\left\langle \cdot,\cdot \right\rangle } ∥ ⋅ ∥ := ⟨ ⋅ , ⋅ ⟩ , redefining the orthonormal system gives the following equation.
∥ x k ∥ = ⟨ x k , x ℓ ⟩ = { 1 if k = ℓ 0 if k ≠ ℓ
\left\| \mathbf{x}_{k} \right\| = \left\langle \mathbf{x}_{k},\mathbf{x}_{\ell} \right\rangle =
\begin{cases} 1 & \text{if}\ k=\ell
\\ 0 & \text{if}\ k\ne \ell \end{cases}
∥ x k ∥ = ⟨ x k , x ℓ ⟩ = { 1 0 if k = ℓ if k = ℓ
Moreover, there is no need for the orthogonal system to be defined specifically for a countable set .
Definition Let A A A be an arbitrary index set , and α \alpha α , β \beta β be indices of A A A . If the set of elements X X X , { x α } α ∈ A \left\{ \mathbf{x}_{\alpha} \right\}_{\alpha \in A} { x α } α ∈ A , satisfies the following equation, it is called an orthogonal system or an orthogonal set .
⟨ x α , x β ⟩ = 0 ∀ α ≠ β
\left\langle \mathbf{x}_{\alpha}, \mathbf{x}_{\beta} \right\rangle =0\quad \forall \alpha \ne \beta
⟨ x α , x β ⟩ = 0 ∀ α = β
If the orthogonal system { x α } α ∈ A \left\{ \mathbf{x}_{\alpha} \right\}_{\alpha \in A} { x α } α ∈ A satisfies the following equation, it is called an orthonormal system or an orthonormal set .
∥ x α ∥ = 1 ∀ α ∈ A
\left\| \mathbf{x}_{\alpha} \right\| =1\quad \forall \alpha \in A
∥ x α ∥ = 1 ∀ α ∈ A
Explanation Therefore, for the orthonormal system { x α } α ∈ A \left\{ \mathbf{x}_{\alpha} \right\}_{\alpha \in A} { x α } α ∈ A , the following equation is obtained.
⟨ x α , x β ⟩ = { 1 if α = β 0 if α ≠ β
\left\langle \mathbf{x}_{\alpha},\mathbf{x}_{\beta} \right\rangle =\begin{cases} 1 & \text{if}\ \alpha=\beta
\\ 0 & \text{if}\ \alpha \ne \beta \end{cases}
⟨ x α , x β ⟩ = { 1 0 if α = β if α = β