logo

B-spline Scaling Equation 📂Fourier Analysis

B-spline Scaling Equation

Formulas1

(a) B-spline scaling equation:

For a B-spline of order mNm\in N, the following equation holds:

Nm^(2γ)=H0(γ)Nm^(γ),γR \widehat{N_{m}}(2\gamma)=H_{0}(\gamma)\widehat{N_{m}}(\gamma),\quad \forall \gamma \in \mathbb{R}

Where H0H_{0} is a function with period 11, which is described as follows:

H0(γ)=(1+e2πiγ2)m H_{0}(\gamma)=\left( \frac{1+e^{-2\pi i \gamma}}{2} \right)^{m}

Also, the definition of the Fourier transform of ff, f^\widehat{f}, is as follows:

f^(γ):=f(x)e2πixγdx \widehat{f}(\gamma):=\int _{-\infty} ^{\infty} f(x)e^{-2\pi i x \gamma}dx

(b) Central B-spline scaling equation:

Similarly, for a central B-spline of order mm, the following equation holds:

Bm^(2γ)=H0(γ)Bm^(γ),γR \widehat{B_{m}}(2\gamma) = H_{0}(\gamma)\widehat{B_{m}}(\gamma),\quad \forall \gamma \in \mathbb{R}

Where, again, H0H_{0} is a function with period 22, which is described as follows:

H0(γ)=(eπiγ+eπiγ2)m=cosm(πγ) H_{0}(\gamma)=\left( \frac{e^{\pi i \gamma}+e^{-\pi i \gamma}}{2} \right)^{m}=\cos^{m}(\pi \gamma)

Proof

(a)

The Fourier transform of the B-spline is as follows:

Nm^(γ)=(1e2πiγ2πiγ)m \widehat{N_{m}}(\gamma)=\left( \frac{1-e^{-2\pi i\gamma}}{2\pi i \gamma} \right)^{m}

Therefore,

Nm^(2γ)= (1e2πi2γ2πi2γ)m= (1+e2πiγ)m(1e2πiγ)m2m(2πiγ)m= (1+e2πiγ2)m(1e2πiγ2πiγ)m= H0(γ)Nm^(γ) \begin{align*} \widehat{N_{m}}(2\gamma) =&\ \left( \frac{1-e^{-2\pi i2\gamma}}{2\pi i 2\gamma} \right)^{m} \\ =&\ \frac{(1+e^{-2\pi i \gamma})^{m}(1-e^{-2\pi i \gamma})^{m}}{2^{m}(2\pi i \gamma)^{m}} \\ =&\ \left( \frac{1+e^{-2\pi i \gamma}}{2} \right)^{m} \left( \frac{1-e^{-2\pi i \gamma}}{2\pi i \gamma} \right)^{m} \\ =&\ H_{0}(\gamma) \widehat{N_{m}}(\gamma) \end{align*}

(b)

The Fourier transform of the central B-spline is as follows:

Bm^(γ)=(eπiγeπiγ2πiγ)m=(sin(πγ)πγ)m \widehat{B_{m}}(\gamma)=\left( \frac{e^{\pi i \gamma}-e^{-\pi i \gamma}}{2\pi i \gamma} \right)^{m}=\left( \frac{\sin (\pi\gamma)}{\pi \gamma} \right)^{m}

Therefore,

Bm^(2γ)= (eπi2γeπi2γ2πi2γ)m= (eπiγ+eπiγ)m(eπiγeπiγ)m2m(2πiγ)m= (eπiγ+eπiγ2)m(eπiγeπiγ2πiγ)m= H0(γ)Bm^(γ) \begin{align*} \widehat{B_{m}}(2\gamma) =&\ \left( \frac{e^{\pi i 2\gamma} - e^{-\pi i 2\gamma}}{2\pi i 2\gamma} \right)^{m} \\ =&\ \frac{(e^{\pi i \gamma}+e^{-\pi i \gamma})^{m}(e^{\pi i \gamma}-e^{-\pi i \gamma})^{m} }{2^{m}(2\pi i \gamma)^{m}} \\ =&\ \left( \frac{e^{\pi i \gamma}+e^{-\pi i \gamma}}{2} \right)^{m} \left( \frac{e^{\pi i \gamma}-e^{-\pi i \gamma} }{2\pi i \gamma} \right)^{m} \\ =&\ H_{0}(\gamma)\widehat{B_{m}}(\gamma) \end{align*}


  1. Ole Christensen, Functions, Spaces, and Expansions: Mathematical Tools in Physics and Engineering (2010), p213 ↩︎