logo

Central B-spline 📂Fourier Analysis

Central B-spline

Definition1

For mNm\in \mathbb{N}, the centered B-spline BmB_{m} is defined as follows:

Bm(x):=Tm2Nm(x)=Nm(x+12) B_{m}(x):= T_{-\frac{m}{2}}N_{m}(x)=N_{m}(x+{\textstyle \frac{1}{2}})

Here, TT is the translation of the space L2L^{2} space.

Description

It can also be defined as follows:

B1:=χ[1/2,1/2],Bm+1:=BmB1, mN B_{1}:= \chi_{[-1/2,1/2]},\quad B_{m+1}:=B_{m}*B_{1},\ m\in\mathbb{N}

Both definitions actually mean the same function. The key point here is that BmB_{m} is defined to be an even function. As with the B-spline, it is easy to see that the following equation holds:

Bm+1(x)=Bm(xt)B1(t)dt=1212Bm(xt)dt B_{m+1}(x)=\int _{-\infty} ^{\infty} B_{m}(x-t)B_{1}(t)dt=\int_{-{\textstyle \frac{1}{2}}}^{{\textstyle \frac{1}{2}}}B_{m}(x-t)dt

The centered B-spline is merely a translation of the B-spline, and therefore has the same properties of the B-spline.

Properties

(a) suppBm=[m2,m2]\mathrm{supp} B_{m}=[-\frac{m}{2},\frac{m}{2}]

(b) Bm(x)dx=1\displaystyle \int _{-\infty} ^{\infty} B_{m}(x)dx=1

(c) For m2m\ge 2,

kZBm(xk)=1,xR \sum \limits_{k\in \mathbb{Z}}B_{m}(x-k)=1,\quad \forall x\in R

(c’) When m=1m=1, the above equation holds for xR{±12,±32,}x\in \mathbb{R}\setminus \left\{ \pm\frac{1}{2},\pm \frac{3}{2},\dots \right\}.

(d) The Fourier transform of the centered B-spline is as follows:

Bm^(γ)=(eπiγeπiγ2πiγ)m=(sin(πγ)πγ)m \widehat{B_{m}}(\gamma)=\left( \frac{e^{\pi i \gamma}-e^{-\pi i \gamma}}{2\pi i \gamma} \right)^{m}=\left( \frac{\sin (\pi\gamma)}{\pi \gamma} \right)^{m}

Here, the definition of the Fourier transform f^\widehat{f} of ff is as follows:

f^(γ):=f(x)e2πixγdx \widehat{f}(\gamma):=\int _{-\infty} ^{\infty} f(x)e^{-2\pi i x\gamma}dx

Proof

(a)

Since suppNm=[m2,m2]\mathrm{supp}N_{m}=\left[ -\frac{m}{2}, \frac{m}{2} \right] and Bm=Tm2NmB_{m}=T_{- \frac{m}{2}}N_{m},

suppBm=[0m2,mm2]=[m2,m2] \mathrm{supp} B_{m} = \left[0-\frac{m}{2},m-\frac{m}{2} \right] = \left[ -\frac{m}{2},\frac{m}{2} \right]

(b)

Nm(x)dx=1 \int _{-\infty} ^{\infty} N_{m}(x)dx=1

and since Bm=Tm2NmB_{m}=T_{- \frac{m}{2}}N_{m},

Bm(x)dx=Tm2Bm(x)dx=1 \int _{-\infty} ^{\infty} B_{m}(x)dx=\int _{-\infty} ^{\infty} T_{-\frac{m}{2}}B_{m}(x)dx=1

(c)

kZNm(xk)=1,xR \sum \limits_{k \in \mathbb{Z}} N_{m}(x-k)=1,\quad \forall x\in \mathbb{R}

thus,

kZBm(xk)=kZTm2Nm(xk)=1,xR \sum \limits_{k\in \mathbb{Z}}B_{m}(x-k)=\sum \limits_{k \in \mathbb{Z}} T_{-\frac{m}{2}}N_{m}(x-k)=1,\quad \forall x\in \mathbb{R}

(c')

When m=1m=1, if NmN_{m} and xRZx\in \mathbb{R}\setminus \mathbb{Z} holds and Bm=Tm2NmB_{m}=T_{- \frac{m}{2}}N_{m}, then it holds for xR{±12,±32,}x\in \mathbb{R}\setminus \left\{ \pm\frac{1}{2},\pm \frac{3}{2},\dots \right\}.

(d)

The Fourier transform of the B-spline is as follows:

Nm^(γ)=(1e2πiγ2πiγ)m \widehat{N_{m}}(\gamma)=\left( \frac{1-e^{-2\pi i\gamma}}{2\pi i \gamma} \right)^{m}

Then, by the properties of the Fourier transform,

F[Nm(x+m2)](γ)=e2πim2γNm^(γ) \mathcal{F}\left[ N_{m}(x+\frac{m}{2}) \right] (\gamma)=e^{2\pi i \frac{ m}{2} \gamma}\widehat{N_{m}}(\gamma)

thus,

Bm^(γ)= F[Bm(x)](γ)=F[Nm(x+m2)](γ)= e2πim2γNm^(γ)= (eπiγ)m(1e2πiγ2πiγ)m= (eπiγeπiγ2πiγ)m= (sin(πγ)πγ)m \begin{align*} \widehat{B_{m}}(\gamma) =&\ \mathcal{F}\left[ B_{m}(x) \right] (\gamma) =\mathcal{F}\left[ N_{m}(x+\textstyle \frac{m}{2}) \right] (\gamma) \\ =&\ e^{2\pi i \frac{m}{2} \gamma}\widehat{N_{m}}(\gamma) \\ =&\ \left(e^{\pi i \gamma}\right)^{m}\left( \frac{1-e^{-2\pi i\gamma}}{2\pi i \gamma} \right)^{m} \\ =&\ \left( \frac{e^{\pi i \gamma}-e^{-\pi i \gamma}}{2\pi i \gamma} \right)^{m} \\ =&\ \left( \frac{\sin (\pi\gamma)}{\pi \gamma} \right)^{m} \end{align*}


  1. Ole Christensen, Functions, Spaces, and Expansions: Mathematical Tools in Physics and Engineering (2010), p208-209 ↩︎