Central B-spline
📂Fourier Analysis Central B-spline Definition For m ∈ N m\in \mathbb{N} m ∈ N , the centered B-spline B m B_{m} B m is defined as follows:
B m ( x ) : = T − m 2 N m ( x ) = N m ( x + 1 2 )
B_{m}(x):= T_{-\frac{m}{2}}N_{m}(x)=N_{m}(x+{\textstyle \frac{1}{2}})
B m ( x ) := T − 2 m N m ( x ) = N m ( x + 2 1 )
Here, T T T is the translation of the space L 2 L^{2} L 2 space .
Description It can also be defined as follows:
B 1 : = χ [ − 1 / 2 , 1 / 2 ] , B m + 1 : = B m ∗ B 1 , m ∈ N
B_{1}:= \chi_{[-1/2,1/2]},\quad B_{m+1}:=B_{m}*B_{1},\ m\in\mathbb{N}
B 1 := χ [ − 1/2 , 1/2 ] , B m + 1 := B m ∗ B 1 , m ∈ N
Both definitions actually mean the same function. The key point here is that B m B_{m} B m is defined to be an even function. As with the B-spline , it is easy to see that the following equation holds:
B m + 1 ( x ) = ∫ − ∞ ∞ B m ( x − t ) B 1 ( t ) d t = ∫ − 1 2 1 2 B m ( x − t ) d t
B_{m+1}(x)=\int _{-\infty} ^{\infty} B_{m}(x-t)B_{1}(t)dt=\int_{-{\textstyle \frac{1}{2}}}^{{\textstyle \frac{1}{2}}}B_{m}(x-t)dt
B m + 1 ( x ) = ∫ − ∞ ∞ B m ( x − t ) B 1 ( t ) d t = ∫ − 2 1 2 1 B m ( x − t ) d t
The centered B-spline is merely a translation of the B-spline , and therefore has the same properties of the B-spline .
Properties (a) s u p p B m = [ − m 2 , m 2 ] \mathrm{supp} B_{m}=[-\frac{m}{2},\frac{m}{2}] supp B m = [ − 2 m , 2 m ]
(b) ∫ − ∞ ∞ B m ( x ) d x = 1 \displaystyle \int _{-\infty} ^{\infty} B_{m}(x)dx=1 ∫ − ∞ ∞ B m ( x ) d x = 1
(c) For m ≥ 2 m\ge 2 m ≥ 2 ,
∑ k ∈ Z B m ( x − k ) = 1 , ∀ x ∈ R
\sum \limits_{k\in \mathbb{Z}}B_{m}(x-k)=1,\quad \forall x\in R
k ∈ Z ∑ B m ( x − k ) = 1 , ∀ x ∈ R
(c’) When m = 1 m=1 m = 1 , the above equation holds for x ∈ R ∖ { ± 1 2 , ± 3 2 , … } x\in \mathbb{R}\setminus \left\{ \pm\frac{1}{2},\pm \frac{3}{2},\dots \right\} x ∈ R ∖ { ± 2 1 , ± 2 3 , … } .
(d) The Fourier transform of the centered B-spline is as follows:
B m ^ ( γ ) = ( e π i γ − e − π i γ 2 π i γ ) m = ( sin ( π γ ) π γ ) m
\widehat{B_{m}}(\gamma)=\left( \frac{e^{\pi i \gamma}-e^{-\pi i \gamma}}{2\pi i \gamma} \right)^{m}=\left( \frac{\sin (\pi\gamma)}{\pi \gamma} \right)^{m}
B m ( γ ) = ( 2 πiγ e πiγ − e − πiγ ) m = ( πγ sin ( πγ ) ) m
Here, the definition of the Fourier transform f ^ \widehat{f} f of f f f is as follows:
f ^ ( γ ) : = ∫ − ∞ ∞ f ( x ) e − 2 π i x γ d x
\widehat{f}(\gamma):=\int _{-\infty} ^{\infty} f(x)e^{-2\pi i x\gamma}dx
f ( γ ) := ∫ − ∞ ∞ f ( x ) e − 2 πi x γ d x
Proof (a) Since s u p p N m = [ − m 2 , m 2 ] \mathrm{supp}N_{m}=\left[ -\frac{m}{2}, \frac{m}{2} \right] supp N m = [ − 2 m , 2 m ] and B m = T − m 2 N m B_{m}=T_{- \frac{m}{2}}N_{m} B m = T − 2 m N m ,
s u p p B m = [ 0 − m 2 , m − m 2 ] = [ − m 2 , m 2 ]
\mathrm{supp} B_{m} = \left[0-\frac{m}{2},m-\frac{m}{2} \right] = \left[ -\frac{m}{2},\frac{m}{2} \right]
supp B m = [ 0 − 2 m , m − 2 m ] = [ − 2 m , 2 m ]
■
(b) ∫ − ∞ ∞ N m ( x ) d x = 1
\int _{-\infty} ^{\infty} N_{m}(x)dx=1
∫ − ∞ ∞ N m ( x ) d x = 1
and since B m = T − m 2 N m B_{m}=T_{- \frac{m}{2}}N_{m} B m = T − 2 m N m ,
∫ − ∞ ∞ B m ( x ) d x = ∫ − ∞ ∞ T − m 2 B m ( x ) d x = 1
\int _{-\infty} ^{\infty} B_{m}(x)dx=\int _{-\infty} ^{\infty} T_{-\frac{m}{2}}B_{m}(x)dx=1
∫ − ∞ ∞ B m ( x ) d x = ∫ − ∞ ∞ T − 2 m B m ( x ) d x = 1
■
(c) ∑ k ∈ Z N m ( x − k ) = 1 , ∀ x ∈ R
\sum \limits_{k \in \mathbb{Z}} N_{m}(x-k)=1,\quad \forall x\in \mathbb{R}
k ∈ Z ∑ N m ( x − k ) = 1 , ∀ x ∈ R
thus,
∑ k ∈ Z B m ( x − k ) = ∑ k ∈ Z T − m 2 N m ( x − k ) = 1 , ∀ x ∈ R
\sum \limits_{k\in \mathbb{Z}}B_{m}(x-k)=\sum \limits_{k \in \mathbb{Z}} T_{-\frac{m}{2}}N_{m}(x-k)=1,\quad \forall x\in \mathbb{R}
k ∈ Z ∑ B m ( x − k ) = k ∈ Z ∑ T − 2 m N m ( x − k ) = 1 , ∀ x ∈ R
■
(c') When m = 1 m=1 m = 1 , if N m N_{m} N m and x ∈ R ∖ Z x\in \mathbb{R}\setminus \mathbb{Z} x ∈ R ∖ Z holds and B m = T − m 2 N m B_{m}=T_{- \frac{m}{2}}N_{m} B m = T − 2 m N m , then it holds for x ∈ R ∖ { ± 1 2 , ± 3 2 , … } x\in \mathbb{R}\setminus \left\{ \pm\frac{1}{2},\pm \frac{3}{2},\dots \right\} x ∈ R ∖ { ± 2 1 , ± 2 3 , … } .
■
(d) The Fourier transform of the B-spline is as follows:
N m ^ ( γ ) = ( 1 − e − 2 π i γ 2 π i γ ) m
\widehat{N_{m}}(\gamma)=\left( \frac{1-e^{-2\pi i\gamma}}{2\pi i \gamma} \right)^{m}
N m ( γ ) = ( 2 πiγ 1 − e − 2 πiγ ) m
Then, by the properties of the Fourier transform ,
F [ N m ( x + m 2 ) ] ( γ ) = e 2 π i m 2 γ N m ^ ( γ )
\mathcal{F}\left[ N_{m}(x+\frac{m}{2}) \right] (\gamma)=e^{2\pi i \frac{ m}{2} \gamma}\widehat{N_{m}}(\gamma)
F [ N m ( x + 2 m ) ] ( γ ) = e 2 πi 2 m γ N m ( γ )
thus,
B m ^ ( γ ) = F [ B m ( x ) ] ( γ ) = F [ N m ( x + m 2 ) ] ( γ ) = e 2 π i m 2 γ N m ^ ( γ ) = ( e π i γ ) m ( 1 − e − 2 π i γ 2 π i γ ) m = ( e π i γ − e − π i γ 2 π i γ ) m = ( sin ( π γ ) π γ ) m
\begin{align*}
\widehat{B_{m}}(\gamma) =&\ \mathcal{F}\left[ B_{m}(x) \right] (\gamma) =\mathcal{F}\left[ N_{m}(x+\textstyle \frac{m}{2}) \right] (\gamma)
\\ =&\ e^{2\pi i \frac{m}{2} \gamma}\widehat{N_{m}}(\gamma)
\\ =&\ \left(e^{\pi i \gamma}\right)^{m}\left( \frac{1-e^{-2\pi i\gamma}}{2\pi i \gamma} \right)^{m}
\\ =&\ \left( \frac{e^{\pi i \gamma}-e^{-\pi i \gamma}}{2\pi i \gamma} \right)^{m}
\\ =&\ \left( \frac{\sin (\pi\gamma)}{\pi \gamma} \right)^{m}
\end{align*}
B m ( γ ) = = = = = F [ B m ( x ) ] ( γ ) = F [ N m ( x + 2 m ) ] ( γ ) e 2 πi 2 m γ N m ( γ ) ( e πiγ ) m ( 2 πiγ 1 − e − 2 πiγ ) m ( 2 πiγ e πiγ − e − πiγ ) m ( πγ sin ( πγ ) ) m
■