Properties of Convolution
📂Fourier AnalysisProperties of Convolution
Theorem
Convolution satisfies the following properties.
(a) Commutative Law
f∗g=g∗f
(b) Distributive Law
f∗(g+h)=f∗g+f∗h
(c) Associative Law
f∗(g∗h)=(f∗g)∗h
(d) Scalar Multiplication Associative Law
a(f∗g)=(af∗g)=(f∗ag)
(e) Differentiation
(f∗g)′=f′∗g=f∗g′
(f) Complex Conjugate
f∗g=f∗g
(g) Dirac Delta Function
f∗δ=f
Proof
(a)
f∗g(x)=∫−∞∞f(y)g(x−y)dy=∫∞−∞f(x−z)g(z)(−dz)=∫−∞∞f(x−z)g(z)dz=∫−∞∞g(z)f(x−z)dz=g∗f(x)
In the second equality, it was substituted with x−y=z.
■
(b)
f∗(g+h)(x)=∫f(y)(g+h)(x−y)dy=∫f(y)(g(x−y)+h(x−y))dy=∫f(y)g(x−y)dy+∫f(y)h(x−y)dy=f∗g(x)+f∗h(x)
■
(c)
f∗(g∗h)(x)=∫yf(y)g∗h(x−y)dy=∫yf(y)h∗g(x−y)dy=∫yf(y)∫zh(z)g(x−y−z)dzdy=∫zh(z)∫yf(y)g(x−z−y)dydz=∫zh(z)f∗g(x−z)dz=h∗(f∗g)(x)=(f∗g)∗h(x)
(d)
a(f∗g)(x)=a∫f(y)g(x−y)dy=∫af(y)g(x−y)dy=af∗g(x)=∫f(y)ag(x−y)dy=f∗ag(x)
\ast \eta
■
(e)
(f∗g)′(x)=h→0limhf∗g(x+h)−f∗g(x)=h→0limh∫f(y)g(x+h−y)dy−∫f(y)g(x−y)dy=h→0lim∫f(y)hg(x+h−y)−g(x−y)dy=∫f(y)h→0limhg(x+h−y)−g(x−y)dy=∫f(y)g′(x−y)dy=f∗g′(x)
At this point, due to (a),
(f∗g)′(x)=(g∗f)′(x)=g∗f′(x)=f′∗g(x)
Therefore,
(f∗g)′(x)=f′∗g(x)=f∗g′(x)
■
(f)
f∗g(x)=∫f(y)g(x−y)dy=∫f(y)g(x−y)dy=∫f(y) g(x−y)dy=f∗g(x)
■
(g)
f∗δ(x)=∫f(y)δ(x−y)dy=f(x)∫δ(x−y)dy=f(x)
■