Convolution Norm Convergence Theorem
📂Fourier Analysis Convolution Norm Convergence Theorem Theorem Let the function g ∈ L 1 g \in L^{1} g ∈ L 1 be bounded and satisfy ∫ R g ( y ) d y = 1 \int_{\mathbb{R}}g(y)dy=1 ∫ R g ( y ) d y = 1 . Assuming f ∈ L 2 f\in L^{2} f ∈ L 2 and that the convolution f ∗ g f \ast g f ∗ g of f f f and g g g is well-defined for all x ∈ R x\in \mathbb{R} x ∈ R , then f ∗ g ϵ f \ast g_{\epsilon} f ∗ g ϵ converges in norm to f f f .
lim ϵ → 0 ∥ f ∗ g ϵ − f ∥ = 0
\begin{equation}
\lim \limits_{\epsilon \to 0} \left\| f \ast g_{\epsilon} -f \right\| = 0
\label{eq1}
\end{equation}
ϵ → 0 lim ∥ f ∗ g ϵ − f ∥ = 0
In this case, g ϵ ( y ) = 1 ϵ g ( y ϵ ) g_{\epsilon}(y)=\frac{1}{\epsilon}g \left( \frac{y}{\epsilon} \right) g ϵ ( y ) = ϵ 1 g ( ϵ y ) .
The name ‘Convolution Norm Convergence Theorem’ is arbitrarily given as this theorem does not have an official name. The Convolution Convergence Theorem demonstrates that f ∗ g ϵ ( x ) f \ast g_{\epsilon}(x) f ∗ g ϵ ( x ) converges pointwise to f ( x ) f(x) f ( x ) , while this theorem shows that the function f ∗ g ϵ f \ast g_{\epsilon} f ∗ g ϵ itself converges to f f f .
Proof To demonstrate ( eq1 ) \eqref{eq1} ( eq1 ) , organize the equation as follows.
f ∗ g ϵ ( x ) − f ( x ) = ∫ f ( x − y ) g ϵ ( y ) d y − f ( x ) ∫ g ϵ ( y ) d y = ∫ [ f ( x − y ) − f ( x ) ] g ϵ ( y ) d y = ∫ [ f ( x − y ) − f ( x ) ] 1 ϵ g ( y ϵ ) d y
\begin{align*}
f \ast g_{\epsilon}(x)-f(x) &=\int f(x-y)g_{\epsilon}(y)dy-f(x)\int g_{\epsilon}(y)dy
\\ &=\int \big[ f(x-y)-f(x)\big]g_{\epsilon}(y)dy
\\ &=\int \big[ f(x-y)-f(x) \big] \frac{1}{\epsilon}g\left(\frac{y}{\epsilon} \right)dy
\end{align*}
f ∗ g ϵ ( x ) − f ( x ) = ∫ f ( x − y ) g ϵ ( y ) d y − f ( x ) ∫ g ϵ ( y ) d y = ∫ [ f ( x − y ) − f ( x ) ] g ϵ ( y ) d y = ∫ [ f ( x − y ) − f ( x ) ] ϵ 1 g ( ϵ y ) d y
Substituting with y = ϵ z y=\epsilon z y = ϵz gives:
f ∗ g ϵ ( x ) − f ( x ) = ∫ [ f ( x − y ) − f ( x ) ] 1 ϵ g ( y ϵ ) d y = ∫ [ f ( x − ϵ z ) − f ( x ) ] g ( z ) d z = ∫ [ T ϵ z f ( x ) − f ( x ) ] g ( z ) d z
\begin{align*}
f \ast g_{\epsilon}(x)-f(x) &=\int \big[ f(x-y)-f(x) \big] \frac{1}{\epsilon}g\left(\frac{y}{\epsilon} \right)dy
\\ &=\int \big[ f(x-\epsilon z)-f(x) \big] g\left(z\right)dz
\\ &=\int \big[ T_{\epsilon z}f(x)-f(x) \big] g\left(z\right)dz
\end{align*}
f ∗ g ϵ ( x ) − f ( x ) = ∫ [ f ( x − y ) − f ( x ) ] ϵ 1 g ( ϵ y ) d y = ∫ [ f ( x − ϵz ) − f ( x ) ] g ( z ) d z = ∫ [ T ϵz f ( x ) − f ( x ) ] g ( z ) d z
Minkowski’s Inequality for Integrals
For 1 ≤ p < ∞ 1\le p < \infty 1 ≤ p < ∞ , given f ∈ L p f\in L^{p} f ∈ L p and g ∈ L 1 g \in L^{1} g ∈ L 1 , the following inequality holds:
∥ ∫ f ( ⋅ , y ) g ( y ) d y ∥ p ≤ ∫ ∥ f ( ⋅ , y ) ∥ p ∣ g ( y ) ∣ d y
\left\| \int f(\cdot,y)g(y)dy \right\|_{p} \le \int \left\| f(\cdot,y) \right\|_{p} |g(y)|dy
∫ f ( ⋅ , y ) g ( y ) d y p ≤ ∫ ∥ f ( ⋅ , y ) ∥ p ∣ g ( y ) ∣ d y
Hence, by Minkowski’s inequality:
∥ f ∗ g ϵ − f ∥ 2 = ∥ ∫ [ T ϵ z f − f ] g ( z ) d z ∥ 2 ≤ ∫ ∥ T ϵ z f − f ∥ 2 ∣ g ( z ) ∣ d z
\begin{align*}
\left\| f \ast g_{\epsilon}-f \right\|_{2} &= \left\| \int \big[ T_{\epsilon z}f-f \big] g\left(z\right)dz \right\|_{2}
\\ &\le \int \left\| T_{\epsilon z }f-f \right\|_{2} \left| g(z) \right|dz
\end{align*}
∥ f ∗ g ϵ − f ∥ 2 = ∫ [ T ϵz f − f ] g ( z ) d z 2 ≤ ∫ ∥ T ϵz f − f ∥ 2 ∣ g ( z ) ∣ d z
Since g ∈ L 1 g\in L^{1} g ∈ L 1 and ∥ T ϵ z f − f ∥ 2 ≤ 2 ∥ f ∥ 2 \left\| T_{\epsilon z }f-f \right\|_{2}\le 2\left\| f \right\|_{2} ∥ T ϵz f − f ∥ 2 ≤ 2 ∥ f ∥ 2 , ∥ f ∗ g ϵ − f ∥ 2 \left\| f \ast g_{\epsilon}-f \right\|_{2} ∥ f ∗ g ϵ − f ∥ 2 is bounded.
For 1 ≤ p < ∞ 1\le p <\infty 1 ≤ p < ∞ , given f ∈ L p f\in L^{p} f ∈ L p and z ∈ R n z\in \mathbb{R}^{n} z ∈ R n , the following inequality holds:
lim y → 0 ∥ T y + z f − T z f ∥ p = 0
\lim \limits_{y\to 0} \left\| T_{y+z}f-T_{z}f \right\|_{p}=0
y → 0 lim ∥ T y + z f − T z f ∥ p = 0
Here, T T T refers to translation .
With the above facts, the following holds:
lim ϵ → 0 ∥ T ϵ z f − f ∥ 2 = 0
\lim \limits_{\epsilon \to 0} \left\| T_{\epsilon z }f-f \right\|_{2}=0
ϵ → 0 lim ∥ T ϵz f − f ∥ 2 = 0
Therefore, satisfying the conditions of the Dominated Convergence Theorem , we obtain the following equation, concluding the proof.
lim ϵ → 0 ∥ f ∗ g ϵ − f ∥ 2 ≤ lim ϵ → 0 ∫ ∥ T ϵ z f − f ∥ 2 ∣ g ( z ) ∣ d z ≤ ∫ lim ϵ → 0 ∥ T ϵ z f − f ∥ 2 ∣ g ( z ) ∣ d z = ∫ 0 ⋅ ∣ g ( z ) ∣ d z = 0
\begin{align*}
\lim \limits_{\epsilon \to 0} \left\| f \ast g_{\epsilon}-f \right\|_{2} &\le \lim \limits_{\epsilon \to 0} \int \left\| T_{\epsilon z }f-f \right\|_{2} \left| g(z) \right|dz
\\ &\le \int\lim \limits_{\epsilon \to 0} \left\| T_{\epsilon z }f-f \right\|_{2} \left| g(z) \right|dz
\\ &= \int 0 \cdot \left| g(z) \right|dz
\\ &=0
\end{align*}
ϵ → 0 lim ∥ f ∗ g ϵ − f ∥ 2 ≤ ϵ → 0 lim ∫ ∥ T ϵz f − f ∥ 2 ∣ g ( z ) ∣ d z ≤ ∫ ϵ → 0 lim ∥ T ϵz f − f ∥ 2 ∣ g ( z ) ∣ d z = ∫ 0 ⋅ ∣ g ( z ) ∣ d z = 0
■