logo

Convolution Norm Convergence Theorem 📂Fourier Analysis

Convolution Norm Convergence Theorem

Theorem

Let the function gL1g \in L^{1} be bounded and satisfy Rg(y)dy=1\int_{\mathbb{R}}g(y)dy=1. Assuming fL2f\in L^{2} and that the convolution fgf \ast g of ff and gg is well-defined for all xRx\in \mathbb{R}, then fgϵf \ast g_{\epsilon} converges in norm to ff.

limϵ0fgϵf=0 \begin{equation} \lim \limits_{\epsilon \to 0} \left\| f \ast g_{\epsilon} -f \right\| = 0 \label{eq1} \end{equation}

In this case, gϵ(y)=1ϵg(yϵ)g_{\epsilon}(y)=\frac{1}{\epsilon}g \left( \frac{y}{\epsilon} \right).


The name ‘Convolution Norm Convergence Theorem’ is arbitrarily given as this theorem does not have an official name. The Convolution Convergence Theorem demonstrates that fgϵ(x)f \ast g_{\epsilon}(x) converges pointwise to f(x)f(x), while this theorem shows that the function fgϵf \ast g_{\epsilon} itself converges to ff.

Proof

To demonstrate (eq1)\eqref{eq1}, organize the equation as follows.

fgϵ(x)f(x)=f(xy)gϵ(y)dyf(x)gϵ(y)dy=[f(xy)f(x)]gϵ(y)dy=[f(xy)f(x)]1ϵg(yϵ)dy \begin{align*} f \ast g_{\epsilon}(x)-f(x) &=\int f(x-y)g_{\epsilon}(y)dy-f(x)\int g_{\epsilon}(y)dy \\ &=\int \big[ f(x-y)-f(x)\big]g_{\epsilon}(y)dy \\ &=\int \big[ f(x-y)-f(x) \big] \frac{1}{\epsilon}g\left(\frac{y}{\epsilon} \right)dy \end{align*}

Substituting with y=ϵzy=\epsilon z gives:

fgϵ(x)f(x)=[f(xy)f(x)]1ϵg(yϵ)dy=[f(xϵz)f(x)]g(z)dz=[Tϵzf(x)f(x)]g(z)dz \begin{align*} f \ast g_{\epsilon}(x)-f(x) &=\int \big[ f(x-y)-f(x) \big] \frac{1}{\epsilon}g\left(\frac{y}{\epsilon} \right)dy \\ &=\int \big[ f(x-\epsilon z)-f(x) \big] g\left(z\right)dz \\ &=\int \big[ T_{\epsilon z}f(x)-f(x) \big] g\left(z\right)dz \end{align*}

Minkowski’s Inequality for Integrals

For 1p<1\le p < \infty, given fLpf\in L^{p} and gL1g \in L^{1}, the following inequality holds:

f(,y)g(y)dypf(,y)pg(y)dy \left\| \int f(\cdot,y)g(y)dy \right\|_{p} \le \int \left\| f(\cdot,y) \right\|_{p} |g(y)|dy

Hence, by Minkowski’s inequality:

fgϵf2=[Tϵzff]g(z)dz2Tϵzff2g(z)dz \begin{align*} \left\| f \ast g_{\epsilon}-f \right\|_{2} &= \left\| \int \big[ T_{\epsilon z}f-f \big] g\left(z\right)dz \right\|_{2} \\ &\le \int \left\| T_{\epsilon z }f-f \right\|_{2} \left| g(z) \right|dz \end{align*}

Since gL1g\in L^{1} and Tϵzff22f2\left\| T_{\epsilon z }f-f \right\|_{2}\le 2\left\| f \right\|_{2}, fgϵf2\left\| f \ast g_{\epsilon}-f \right\|_{2} is bounded.

For 1p<1\le p <\infty, given fLpf\in L^{p} and zRnz\in \mathbb{R}^{n}, the following inequality holds:

limy0Ty+zfTzfp=0 \lim \limits_{y\to 0} \left\| T_{y+z}f-T_{z}f \right\|_{p}=0

Here, TT refers to translation.

With the above facts, the following holds:

limϵ0Tϵzff2=0 \lim \limits_{\epsilon \to 0} \left\| T_{\epsilon z }f-f \right\|_{2}=0

Therefore, satisfying the conditions of the Dominated Convergence Theorem, we obtain the following equation, concluding the proof.

limϵ0fgϵf2limϵ0Tϵzff2g(z)dzlimϵ0Tϵzff2g(z)dz=0g(z)dz=0 \begin{align*} \lim \limits_{\epsilon \to 0} \left\| f \ast g_{\epsilon}-f \right\|_{2} &\le \lim \limits_{\epsilon \to 0} \int \left\| T_{\epsilon z }f-f \right\|_{2} \left| g(z) \right|dz \\ &\le \int\lim \limits_{\epsilon \to 0} \left\| T_{\epsilon z }f-f \right\|_{2} \left| g(z) \right|dz \\ &= \int 0 \cdot \left| g(z) \right|dz \\ &=0 \end{align*}