If the Derivative of a Curve is Continuous, the Curve Can Be Measured
📂Analysis If the Derivative of a Curve is Continuous, the Curve Can Be Measured Theorem If γ ′ \gamma ^{\prime} γ ′ is continuous on the interval [ a , b ] [a,b] [ a , b ] , then γ \gamma γ forms a rectifiable curve , and the following equation holds:
Λ ( γ ) = ∫ a b ∣ γ ′ ( t ) ∣ d t
\Lambda (\gamma) = \int _{a} ^{b} \left| \gamma^{\prime}(t) \right| dt
Λ ( γ ) = ∫ a b ∣ γ ′ ( t ) ∣ d t
Proof Let P = { a = x 0 , … , x n = b } P=\left\{ a=x_{0},\dots,x_{n}=b \right\} P = { a = x 0 , … , x n = b } be any partition of the interval [ a , b ] [a,b] [ a , b ] . If we state a ≤ x i − 1 < x i ≤ b a\le x_{i-1}<x_{i}\le b a ≤ x i − 1 < x i ≤ b , then the following is true:
∣ γ ( x i ) − γ ( x i − 1 ) ∣ = ∣ ∫ x i − 1 x i γ ′ ( t ) d t ∣ ≤ ∫ x i − 1 x i ∣ γ ′ ( t ) ∣ d t
\begin{align*}
\left| \gamma (x_{i})-\gamma (x_{i-1}) \right| &= \left| \int_{x_{i-1}}^{x_{i}}\gamma^{\prime} (t)dt \right|
\\ &\le \int_{x_{i-1}}^{x_{i}} \left| \gamma^{\prime} (t) \right|dt
\end{align*}
∣ γ ( x i ) − γ ( x i − 1 ) ∣ = ∫ x i − 1 x i γ ′ ( t ) d t ≤ ∫ x i − 1 x i ∣ γ ′ ( t ) ∣ d t
The first line is true due to The Fundamental Theorem of Calculus, Part 2 , and the second line is true because the integral of the absolute value is greater than the absolute value of the integral . Therefore, we obtain the following:
Λ ( P , γ ) ≤ ∫ a b ∣ γ ′ ( t ) ∣ d t
\Lambda (P,\gamma) \le \int _{a} ^{b} \left| \gamma^{\prime} (t) \right| dt
Λ ( P , γ ) ≤ ∫ a b ∣ γ ′ ( t ) ∣ d t
Since this is true for all subintervals of [ a , b ] [a,b] [ a , b ] , we then obtain:
Λ ( γ ) ≤ ∫ a b ∣ γ ′ ( t ) ∣ d t
\Lambda (\gamma) \le \int _{a} ^{b} \left| \gamma^{\prime} (t) \right| dt
Λ ( γ ) ≤ ∫ a b ∣ γ ′ ( t ) ∣ d t
Let’s consider an arbitrary positive number ε > 0 \varepsilon >0 ε > 0 . Since a continuous function in a compact metric space is uniformly continuous , γ ′ \gamma^{\prime} γ ′ is uniformly continuous . Thus, there exists a positive number δ > 0 \delta >0 δ > 0 satisfying the following equation for ε \varepsilon ε :
∣ s − t ∣ < δ ⟹ ∣ γ ′ ( s ) − γ ′ ( t ) ∣ < ε , s , t ∈ [ a , b ]
\left| s-t \right| < \delta \implies \left| \gamma^{\prime} (s) -\gamma^{\prime} (t) \right| < \varepsilon,\quad s,t\in[a,b]
∣ s − t ∣ < δ ⟹ ∣ γ ′ ( s ) − γ ′ ( t ) ∣ < ε , s , t ∈ [ a , b ]
Now, let’s choose a partition P = { x 0 , … , x n } P=\left\{ x_{0},\dots,x_{n} \right\} P = { x 0 , … , x n } of the interval [ a , b ] [a,b] [ a , b ] that satisfies Δ x i = x i − x i − 1 < δ \Delta x_{i}=x_{i}-x_{i-1}<\delta Δ x i = x i − x i − 1 < δ . Then, for x i − 1 ≤ t ≤ x i x_{i-1}\le t \le x_{i} x i − 1 ≤ t ≤ x i , the following is true:
∣ γ ′ ( t ) ∣ − ∣ γ ′ ( x i ) ∣ ≤ ∣ γ ′ ( t ) − γ ′ ( x i ) ∣ < ε ⟹ ∣ γ ′ ( t ) ∣ ≤ ∣ γ ′ ( x i ) ∣ + ε
\begin{align*}
&&\left| \gamma^{\prime} (t) \right| -\left| \gamma^{\prime} (x_{i}) \right| &\le \left| \gamma^{\prime} (t)-\gamma^{\prime}(x_{i}) \right| <\varepsilon
\\ \implies && \left| \gamma^{\prime} (t) \right| &\le \left| \gamma^{\prime}(x_{i}) \right|+\varepsilon
\end{align*}
⟹ ∣ γ ′ ( t ) ∣ − ∣ γ ′ ( x i ) ∣ ∣ γ ′ ( t ) ∣ ≤ ∣ γ ′ ( t ) − γ ′ ( x i ) ∣ < ε ≤ ∣ γ ′ ( x i ) ∣ + ε
Hence, integrating both sides gives us the following equation:
∫ x i − 1 x i ∣ γ ′ ( t ) ∣ d t ≤ ∫ x i − 1 x i ∣ γ ′ ( x i ) ∣ d t + ∫ x i − 1 x i ε d t = ∣ γ ′ ( x i ) ∣ Δ x i + ε Δ x i = ∣ ∫ x i − 1 x i γ ′ ( x i ) d t ∣ + ε Δ x i = ∣ ∫ x i − 1 x i ( γ ′ ( t ) + γ ′ ( x i ) − γ ′ ( t ) ) d t ∣ + ε Δ x i ≤ ∣ ∫ x i − 1 x i γ ′ ( t ) d t ∣ + ∣ ∫ x i − 1 x i γ ′ ( x i ) − γ ′ ( t ) d t ∣ + ε Δ x i ≤ ∣ γ ( x i ) − γ ( x i − 1 ) ∣ + ∫ x i − 1 x i ε d t + ε Δ x i = ∣ γ ( x i ) − γ ( x i − 1 ) ∣ + 2 ε Δ x i
\begin{align*}
\int_{x_{i-1}}^{x_{i}}\left| \gamma^{\prime} (t) \right|dt
&\le \int_{x_{i-1}}^{x_{i}}\left| \gamma^{\prime} (x_{i}) \right|dt +\int_{x_{i-1}}^{x_{i}} \varepsilon dt \\
&= \left| \gamma^{\prime}(x_{i}) \right|\Delta x_{i} + \varepsilon\Delta x_{i} \\
&= \left|\int_{x_{i-1}}^{x_{i}} \gamma^{\prime}(x_{i})dt \right|+\varepsilon\Delta x_{i} \\
&= \left|\int_{x_{i-1}}^{x_{i}}\big( \gamma^{\prime}(t) +\gamma^{\prime} (x_{i})-\gamma^{\prime}(t) \big)dt\right| +\varepsilon\Delta x_{i} \\
&\le \color{green}{\left|\int_{x_{i-1}}^{x_{i}} \gamma^{\prime}(t)dt\right|}+ \color{blue}{\left| \int_{x_{i-1}}^{x_{i}} \gamma^{\prime} (x_{i})-\gamma^{\prime}(t)dt\right|} +\varepsilon\Delta x_{i} \\
&\le \color{green}{\left| \gamma (x_{i})-\gamma (x_{i-1}) \right|} +\color{blue}{\int_{x_{i-1}}^{x_{i}}\varepsilon dt}+ \varepsilon\Delta x_{i} \\
&= \left| \gamma (x_{i})-\gamma (x_{i-1}) \right| + 2\varepsilon\Delta x_{i}
\end{align*}
∫ x i − 1 x i ∣ γ ′ ( t ) ∣ d t ≤ ∫ x i − 1 x i ∣ γ ′ ( x i ) ∣ d t + ∫ x i − 1 x i ε d t = ∣ γ ′ ( x i ) ∣ Δ x i + ε Δ x i = ∫ x i − 1 x i γ ′ ( x i ) d t + ε Δ x i = ∫ x i − 1 x i ( γ ′ ( t ) + γ ′ ( x i ) − γ ′ ( t ) ) d t + ε Δ x i ≤ ∫ x i − 1 x i γ ′ ( t ) d t + ∫ x i − 1 x i γ ′ ( x i ) − γ ′ ( t ) d t + ε Δ x i ≤ ∣ γ ( x i ) − γ ( x i − 1 ) ∣ + ∫ x i − 1 x i ε d t + ε Δ x i = ∣ γ ( x i ) − γ ( x i − 1 ) ∣ + 2 ε Δ x i
The second and third lines are true because γ ′ ( x i ) \gamma^{\prime}(x_{i}) γ ′ ( x i ) is constant. The fifth line is true due to the triangle inequality. The green part is true because of The Fundamental Theorem of Calculus, Part 2 . The blue part is true due to the condition of uniform continuity. Since ε \varepsilon ε is any positive number, the following is true:
∫ x i − 1 x i ∣ γ ′ ( t ) ∣ d t ≤ ∣ γ ( x i ) − γ ( x i − 1 ) ∣
\int_{x_{i-1}}^{x_{i}}\left| \gamma^{\prime} (t) \right|dt \le \left| \gamma (x_{i})-\gamma (x_{i-1}) \right|
∫ x i − 1 x i ∣ γ ′ ( t ) ∣ d t ≤ ∣ γ ( x i ) − γ ( x i − 1 ) ∣
Summing the above inequality over all Δ x i \Delta x_{i} Δ x i gives us the following equation:
∫ a b ∣ γ ′ ( t ) ∣ d t ≤ ∑ i = 1 n ∣ γ ( x i ) − γ ( x i − 1 ) ∣ = Λ ( P , γ ) ≤ Λ ( γ )
\int _{a} ^{b} \left| \gamma^{\prime} (t) \right| dt \le \sum \limits _{i=1} ^{n} \left|\gamma (x_{i})-\gamma (x_{i-1}) \right|=\Lambda (P,\gamma)\le \Lambda (\gamma)
∫ a b ∣ γ ′ ( t ) ∣ d t ≤ i = 1 ∑ n ∣ γ ( x i ) − γ ( x i − 1 ) ∣ = Λ ( P , γ ) ≤ Λ ( γ )
Therefore, based on Part 1. and Part 2. , the following holds:
Λ ( γ ) = ∫ a b ∣ γ ′ ( t ) ∣ d t
\Lambda (\gamma) = \int _{a} ^{b} \left| \gamma^{\prime}(t) \right| dt
Λ ( γ ) = ∫ a b ∣ γ ′ ( t ) ∣ d t
■