logo

Uniform Convergence and Differentiation 📂Analysis

Uniform Convergence and Differentiation

Theorem1

f(x)=limnfn(x)axb f^{\prime} (x) = \lim_{n \to \infty} f_{n}^{\prime} (x) \quad a \le x \le b

Explanation2

The result of the theorem can be summarized as “the limit of the derivatives is equal to the derivative of the limits”. In other words, it is possible to interchange the limit symbol and the differentiation symbol.

ddxlimnfn(x)=limnddxfn(x)axb \dfrac{d}{dx} \lim\limits_{n \to \infty} f_{n} (x) = \lim\limits_{n \to \infty} \dfrac{d}{dx} f_{n} (x) \quad a \le x \le b

The reason for considering uniform convergence of a sequence of functions concerning differentiation is, firstly, the pointwise convergence does not preserve the differentiability (Counterexample 1). Secondly, even if fnff_{n} \to f holds and ff is differentiable, fnff_{n}^{\prime} \to f^{\prime} might not hold (Counterexample 2).

Counterexample 1

Pointwise convergence of a sequence of differentiable functions fnf_{n} to ff does not guarantee that ff is differentiable.

Proof

Function fn(x)=xnf_{n}(x) = x^{n} is differentiable in [0,1][0, 1]. Define function ff as follows.

f(x)={0if 0x<11if x=1 f (x) = \begin{cases} 0 & \text{if } 0 \le x \lt 1 \\ 1 & \text{if } x = 1 \end{cases}

Then, fn(x)f_{n}(x) converges pointwise to f(x)f(x) at every point x[0,1]x \in [0, 1]. However, it is clear that ff is not differentiable at x=1x = 1.

Counterexample 2

In the interval [0,1][0, 1], fnff_{n} \to f, but there exist differentiable functions fnf_{n} and ff such that

limnfn(x)(limnfn(x)) for x=1 \lim\limits_{n \to \infty} f_{n}^{\prime} (x) \ne \left( \lim\limits_{n \to \infty} f_{n}(x) \right)^{\prime} \quad \text{ for } x=1

Proof

Assume fn(x)=xnnf_{n}(x) = \dfrac{x^{n}}{n} and f(x)=0f(x) = 0. Then, in the interval [0,1][0, 1],

xn0 and n as n x^{n} \to 0 \text{ and } n \to \infty \quad \text{ as } n \to \infty

Thus, fnff_{n} \to f holds. However, since fn(x)=xn1f_{n}^{\prime} (x) = x^{n-1}, it follows that fn(1)=1f_{n}^{\prime} (1) = 1. Therefore,

1=limnfn(1)(limnfn(1))=0 1 = \lim\limits_{n \to \infty} f_{n}^{\prime} (1) \ne \left( \lim\limits_{n \to \infty} f_{n}(1) \right)^{\prime} = 0

Proof

Assumption: fn(x0)f(x0)f_{n}(x_{0}) \to f(x_{0}) and fnf^{\prime}_{n} uniformly converge.


Let a small positive number ϵ>0\epsilon \gt 0 be given. By the equivalence of convergent sequences and Cauchy sequences, there exists a positive number NN such that the following holds due to the assumption.

n,mN    fn(x0)fm(x0)<ϵ2  (1)andfn(t)fm(t)<ϵ2(ba)(atb)(2) n, m \ge N \implies \begin{array}{l} |f_{n} (x_{0}) - f_{m} (x_{0})| \lt \dfrac{\epsilon}{2} \qquad\qquad\qquad\qquad\quad\ \ (1) \\[0.5em] \text{and} \\[0.5em] |f_{n}^{\prime} (t) - f_{m}^{\prime} (t)| \lt \dfrac{\epsilon}{2(b - a)} \quad (a \le t \le b) \qquad (2) \end{array}

Applying the mean value theorem to function fnfmf_{n} - f_{m} along with (2)(2), we obtain the following. Given n,mNn ,m \ge N and x,t[a,b]x, t \in [a, b],

(fn(x)fm(x))(fn(t)fm(t))=xtfn(s)fm(s)(tsx)<xtϵ2(ba)=ϵ2xt(ba)<ϵ2(3) \begin{aligned} \left| \left( f_{n}(x) - f_{m}(x) \right) - \left( f_{n}(t) - f_{m}(t) \right) \right| &= |x - t| \left| f_{n}^{\prime} (s) - f_{m}^{\prime} (s) \right| \quad (t \le s \le x) \nonumber \\ &\lt |x - t|\dfrac{\epsilon}{2(b - a)} = \dfrac{\epsilon}{2} \dfrac{|x - t|}{(b - a)} \nonumber \\ &\lt \dfrac{\epsilon}{2} \end{aligned} \tag{3}

From (1)(1) and (3)(3), the following inequality holds. Given n,mNn, m \ge N and x[a,b]x \in [a, b],

fn(x)fm(x)=fn(x)fm(x)+[fn(x0)fn(x0)]+[fm(x0)fm(x0)]<fn(x)fm(x)(fn(x0)fm(x0))+fn(x0)fm(x0)<ϵ2+ϵ2=ϵ \begin{align*} \left| f_{n}(x) - f_{m}(x) \right| &= \left| f_{n}(x) - f_{m}(x) + \big[f_{n}(x_{0}) - f_{n}(x_{0})\big] + \big[f_{m}(x_{0}) - f_{m}(x_{0}) \big] \right| \\ &\lt \left| f_{n}(x) - f_{m}(x) - (f_{n}(x_{0}) - f_{m}(x_{0})) \right| + \left| f_{n}(x_{0}) - f_{m}(x_{0}) \right|\\ &\lt \dfrac{\epsilon}{2} + \dfrac{\epsilon}{2} = \epsilon \end{align*}

The choice of NN is independent of xx, so fnf_{n} uniformly converges in the interval [0,1][0, 1]. Let the limits be f(x)=limnfn(x)f(x) = \lim\limits_{n \to \infty} f_{n}(x) and (axb)(a \le x \le b).

Now, fixing x[a,b]x \in [a, b], define functions ϕn\phi_{n} and ϕ\phi as follows.

ϕn(t)=fn(t)fn(x)tx,ϕ(t)=f(t)f(x)tx(xt[a,b]) \phi_{n}(t) = \dfrac{f_{n}(t) - f_{n}(x)}{t - x},\qquad \phi(t) = \dfrac{f(t) - f(x)}{t - x} \quad (x \ne t \in [a,b])

Then, the following holds.

limtxϕn(t)=limtxfn(t)fn(x)tx=fn(x) \lim\limits_{t \to x} \phi_{n}(t) = \lim\limits_{t \to x} \dfrac{f_{n}(t) - f_{n}(x)}{t - x} = f_{n}^{\prime} (x)

Also, from the first inequality in (3)(3), we obtain the following.

ϕn(t)ϕm(t)<ϵ2(ba)(n,mN) \left| \phi_{n}(t) - \phi_{m}(t) \right| \lt \dfrac{\epsilon}{2(b - a)} \qquad (n, m \ge N)

Therefore, ϕn\phi_{n} uniformly converges to txt \ne x. Thus, since fnff_{n} \to f,

ϕn(t)ϕ(t) or limnϕn(t)=ϕ(t)(atb,tx) \phi_{n}(t) \rightrightarrows \phi(t) \quad \text{ or } \quad \lim\limits_{n \to \infty} \phi_{n}(t) = \phi (t) \quad (a \le t \le b, t \ne x)

Uniform convergence and continuity

If fnff_{n} ⇉ f on a metric space EE, then the following holds for accumulation points xx in EE.

limtxlimnfn(t)=limnlimtxfn(t) \lim\limits_{t \to x}\lim\limits_{n \to \infty} f_{n}(t) = \lim\limits_{n \to \infty}\lim\limits_{t \to x} f_{n}(t)

Since ϕnϕ on [a,b]{x}\phi_{n} ⇉ \phi \text{ on } [a,b]\setminus \left\{ x \right\}, applying the above theorem to ϕn\phi_{n}, the following holds.

limtxlimnϕn(t)=limnlimtxϕn(t)    limtxϕ(t)=limnfn(x)    limtxf(t)f(x)tx=limnfn(x)    f(x)=limnfn(x) \begin{align*} && \lim\limits_{t \to x}\lim\limits_{n \to \infty} \phi_{n}(t) &= \lim\limits_{n \to \infty}\lim\limits_{t \to x} \phi_{n}(t) \\ \implies && \lim\limits_{t \to x} \phi(t) &= \lim\limits_{n \to \infty} f^{\prime}_{n}(x) \\ \implies && \lim\limits_{t \to x} \dfrac{f(t) - f(x)}{t - x} &= \lim\limits_{n \to \infty} f^{\prime}_{n}(x) \\ \implies && f^{\prime}(x) &= \lim\limits_{n \to \infty} f^{\prime}_{n}(x) \end{align*}


  1. Walter Rudin, Principles of Mathmatical Analysis (3rd Edition, 1976), p152-153 Sequence of functions {fn:fn is differentiable on [a,b]}\left\{ f_{n} : f_{n} \text{ is differentiable on } [a, b] \right\} that are differentiable on the interval [a,b][a, b] converges pointwise at point x0[a,b]x_{0} \in [a, b]. If {fn}\left\{ f_{n}^{\prime} \right\} uniformly converges in interval [a,b][a, b], then {fn}\left\{ f_{n} \right\} also uniformly converges to a function ff which is differentiable in the interval [a,b][a, b], and the following holds. ↩︎

  2. William R. Wade, An Introduction to Analysis (4th Edition, 2010), p222-223 ↩︎