Fourier Transform of the Dirac Delta Function
📂Fourier Analysis Fourier Transform of the Dirac Delta Function Let’s assume that the Fourier transform of the function f ( x ) f(x) f ( x ) is f ^ ( ξ ) = F [ f ] ( x ) = ∫ − ∞ ∞ f ( x ) e − i ξ x d x \hat{f}(\xi) = \mathcal{F}[f] (x) = \displaystyle \int_{-\infty}^{\infty} f(x)e^{-i \xi x}dx f ^ ( ξ ) = F [ f ] ( x ) = ∫ − ∞ ∞ f ( x ) e − i ξ x d x . The Fourier transform of the Dirac delta function δ ( x ) \delta (x) δ ( x ) is as follows.
δ ^ ( ξ ) = F [ δ ] ( ξ ) = 1
\hat{\delta}(\xi) = \mathcal{F}[\delta] (\xi) = 1
δ ^ ( ξ ) = F [ δ ] ( ξ ) = 1
The Fourier transform of δ ( x − y ) \delta (x - y) δ ( x − y ) is
F [ δ ( ⋅ − y ) ] ( ξ ) = e − i ξ y
\mathcal{F}[\delta (\cdot - y)] (\xi) = e^{-i\xi y}
F [ δ ( ⋅ − y )] ( ξ ) = e − i ξ y
Explanation Depending on how the Fourier transform is defined , the preceding constant can be either 1 1 1 or 1 2 π \dfrac{1}{\sqrt{2\pi}} 2 π 1 etc.
Proof By the property of the delta function f ( x 0 ) = ∫ − ∞ ∞ f ( x ) δ ( x − x 0 ) d x f(x_{0}) = \int_{-\infty}^{\infty} f(x)\delta (x - x_{0})dx f ( x 0 ) = ∫ − ∞ ∞ f ( x ) δ ( x − x 0 ) d x ,
F [ δ ] ( ξ ) = ∫ − ∞ ∞ δ ( x ) e − i ξ x d x = e − i ξ x ∣ x = 0 = 1
\begin{align*}
\mathcal{F}[\delta] (\xi) &= \int_{-\infty}^{\infty} \delta (x)e^{-i\xi x}dx \\
&= e^{-i\xi x}|_{x=0} \\
&=1
\end{align*}
F [ δ ] ( ξ ) = ∫ − ∞ ∞ δ ( x ) e − i ξ x d x = e − i ξ x ∣ x = 0 = 1
F [ δ ( ⋅ − y ) ] ( ξ ) = ∫ − ∞ ∞ δ ( x − y ) e − i ξ x d x = e − i ξ x ∣ x = y = e − i ξ y
\begin{align*}
\mathcal{F}[\delta (\cdot - y)] (\xi)
&= \int_{-\infty}^{\infty} \delta (x-y)e^{-i\xi x}dx \\
&= e^{-i\xi x}|_{x=y} \\
&= e^{-i\xi y}
\end{align*}
F [ δ ( ⋅ − y )] ( ξ ) = ∫ − ∞ ∞ δ ( x − y ) e − i ξ x d x = e − i ξ x ∣ x = y = e − i ξ y
■