logo

Fourier Transform of the Dirac Delta Function 📂Fourier Analysis

Fourier Transform of the Dirac Delta Function

Formulas

Let’s assume that the Fourier transform of the function f(x)f(x) is f^(ξ)=F[f](x)=f(x)eiξxdx\hat{f}(\xi) = \mathcal{F}[f] (x) = \displaystyle \int_{-\infty}^{\infty} f(x)e^{-i \xi x}dx. The Fourier transform of the Dirac delta function δ(x)\delta (x) is as follows.

δ^(ξ)=F[δ](ξ)=1 \hat{\delta}(\xi) = \mathcal{F}[\delta] (\xi) = 1

The Fourier transform of δ(xy)\delta (x - y) is

F[δ(y)](ξ)=eiξy \mathcal{F}[\delta (\cdot - y)] (\xi) = e^{-i\xi y}

Explanation

Depending on how the Fourier transform is defined, the preceding constant can be either 11 or 12π\dfrac{1}{\sqrt{2\pi}} etc.

Proof

By the property of the delta function f(x0)=f(x)δ(xx0)dxf(x_{0}) = \int_{-\infty}^{\infty} f(x)\delta (x - x_{0})dx,

F[δ](ξ)=δ(x)eiξxdx=eiξxx=0=1 \begin{align*} \mathcal{F}[\delta] (\xi) &= \int_{-\infty}^{\infty} \delta (x)e^{-i\xi x}dx \\ &= e^{-i\xi x}|_{x=0} \\ &=1 \end{align*}

F[δ(y)](ξ)=δ(xy)eiξxdx=eiξxx=y=eiξy \begin{align*} \mathcal{F}[\delta (\cdot - y)] (\xi) &= \int_{-\infty}^{\infty} \delta (x-y)e^{-i\xi x}dx \\ &= e^{-i\xi x}|_{x=y} \\ &= e^{-i\xi y} \end{align*}