logo

Proof of Liouville's Theorem in Dynamics 📂Dynamics

Proof of Liouville's Theorem in Dynamics

Theorem

Consider the Euclidean space Rn\mathbb{R}^{n} and the function f:RnRnf : \mathbb{R}^{n} \to \mathbb{R}^{n} given the following vector field represented by a differential equation. x˙=f(x) \dot{x} = f(x) For the flow ϕt()\phi_t ( \cdot ) of this system and the region D0RnD_{0} \subset \mathbb{R}^{n}, let Dt:=ϕt(D0)D_{t} := \phi_{t} \left( D_{0} \right) denote the region displaced by the flow after time tt, whose volume is represented as V(t)V(Dt)V(t) \equiv V \left( D_{t} \right). If f=0\nabla \cdot f = 0, then the following holds for all D0RnD_{0} \subset \mathbb{R}^{n} and tRt \in \mathbb{R}. V(Dt)=V(D0) V \left( D_{t} \right) = V \left( D_{0} \right)

Explanation of the Equations

f\nabla \cdot f represents the divergence of the vector field, describing how the vector field spreads out or converges.

VV denotes the volume of a given region in the vector field. The Liouville theorem is easier to understand through equations: simply put, if the divergence is 00 everywhere, the volume of the region moved by the flow does not change.

Proof 1

Strategy: This involves a bit of vector calculus. By representing vector functions and the axes of each vector as follows, we can directly deduce using basic tools of calculus and linear algebra. f:=(f1,,fn)x:=(x1,,xn) f := \left( f_{1} , \cdots , f_{n} \right) \\ x := \left( x_{1} , \cdots , x_{n} \right)


Part 1. When t0=0t_{0} = 0, then dVdtt=t0=D0fdx\displaystyle \left.{{ d V } \over { d t }}\right|_{t = t_{0}} = \int_{D_{0}} \nabla \cdot f dx

Volume definition: When uRn\textbf{u} \in \mathbb{R}^{n} is transformed by the vector function f:RnRn\textbf{f} : \mathbb{R}^{n} \to \mathbb{R}^{n} like f(u)=(f1(u),,fn(u))\textbf{f} \left( \textbf{u} \right) = \left( f_{1} (\textbf{u}) , \cdots , f_{n} (\textbf{u}) \right), the volume of DD is as follows: V(D)=Df(u)udu1du2dun V(D) = \int_{D} \left| {{ \partial \textbf{f} (\textbf{u}) } \over { \partial \textbf{u} }} \right| d u_{1} d u_{2} \cdots d u_{n}

Following the definition of volume V(t)=D0detϕt(x)xdx V(t) = \int_{D_{0}} \det {{ \partial \phi_{t} (x) } \over { \partial x }} dx If we expand flow ϕt(x)\phi_{t} (x) in a Taylor series at t=0t=0 ϕt(x)=x+f(x)t+O(t2) \phi_{t} (x) = x + f(x) t + O \left( t^{2} \right) By taking partial derivatives with respect to xx and considering the identity matrix n×nn\times n ϕt(x)x=E+fxt+O(t2) {{ \partial \phi_{t} (x) } \over { \partial x }} = E + {{ \partial f } \over { \partial x }} t + O \left( t^{2} \right) The determinant of this matrix is detϕt(x)x=det[E+fxt]+O(t2)=1+tr[fx]t+O(t2)=1+(df1dx1++dfndxn)t+O(t2)=1+tf+O(t2) \begin{align*} \det {{ \partial \phi_{t} (x) } \over { \partial x }} =& \det \left[ E + {{ \partial f } \over { \partial x }} t \right] + O \left( t^{2} \right) \\ =& 1 + \text{tr} \left[ {{ \partial f } \over { \partial x }} \right] t + O \left( t^{2} \right) \\ =& 1 + \left( {{ d f_{1} } \over { d x_{1} }} + \cdots + {{ d f_{n} } \over { d x_{n} }} \right) t + O \left( t^{2} \right) \\ =& 1 + t \nabla \cdot f + \mathcal{O} \left( t^{2} \right) \end{align*} Here tr\text{tr} is the trace, the sum of the diagonal elements of the matrix. Now, taking D0dx\int_{D_{0}} \cdot dx for both sides V(t)=D0detϕt(x)xdx=D01dx+D0tfdx+O(t2)=V(D0)+tD0fdx+O(t2) \begin{align*} V(t) =& \int_{D_{0}} \det {{ \partial \phi_{t} (x) } \over { \partial x }} dx \\ =& \int_{D_{0}} 1 dx + \int_{D_{0}} t \nabla \cdot f dx + O \left( t^{2} \right) \\ =& V \left( D_{0} \right) + t \int_{D_{0}} \nabla \cdot f dx + O \left( t^{2} \right) \end{align*} If we move V(D0)=V(0)V \left( D_{0} \right) = V(0) to the left-hand side V(t)V(0)=tD0fdx+O(t2) V(t) - V(0) = t \int_{D_{0}} \nabla \cdot f dx + O \left( t^{2} \right) And divide both sides by (t0)(t - 0), V(t)V(0)t0=D0fdx+O(t1) {{ V(t) - V(0) } \over { t-0 }} = \int_{D_{0}} \nabla \cdot f dx + O \left( t^{1} \right) Since we used Taylor approximation around t=0t = 0 and let t0t \to 0, then O(t1)0O \left( t^{1} \right) \to 0. dVdtt=0=D0fdx \left.{{ d V } \over { d t }}\right|_{t = 0} = \int_{D_{0}} \nabla \cdot f dx


Part 2. Extension to t=t0t = t_{0}

By letting y:=ϕt0(x)y := \phi_{t_{0}} (x), we proceed similarly as in Part 1 to obtain the following. dVdtt=t0=D0fdy \left.{{ d V } \over { d t }}\right|_{t = t_{0}} = \int_{D_{0}} \nabla \cdot f dy If for some constant cRc \in \mathbb{R}, we have f=c\nabla \cdot f = c, dVdtt=t0=D0fdy=D0cdy=cD0dy \left.{{ d V } \over { d t }}\right|_{t = t_{0}} = \int_{D_{0}} \nabla \cdot f dy = \int_{D_{0}} c dy = c \int_{D_{0}} dy Being yy the transformation of xx by the flow for time t0t_{0}, consequently making D0dy\int_{D_{0}} dy the volume at time t0t_{0}. The same holds for any t0Rt_{0} \in \mathbb{R}, thus V=cV V’ = c V The above differential equation possesses a trivial solution V(t)=ectV(0)V(t) = e^{ct} V (0).


Part 3.

From the final equation in Part 2, if c=0c = 0, then V(t)=ectV(0)=V(0)V(t) = e^{ct} V (0) = V(0).

See Also


  1. Wiggins. (2003). Introduction to Applied Nonlinear Dynamical Systems and Chaos Second Edition(2nd Edition): 99~100. ↩︎