logo

Root Test 📂Calculus

Root Test

Summary1

For the series Series n=0an\sum\limits_{n=0}^{\infty} a_{n}, let limnann=L\lim\limits_{n \to \infty} \sqrt[n]{\left| a_{n} \right|} = L be given.

(a) If L<1L < 1, the series absolutely converges.

(b) If L>1L > 1 or L=L = \infty, the series diverges.

(c) If L=1L = 1, it cannot be determined.

Explanation

If L=1L = 1, it cannot be determined, so other methods must be used to judge whether the series converges or diverges. The statement of the theorem is similar to Non-Decision Method.

(c)

If L=1L = 1, it could either converge or diverge. Looking at the series 1n2\sum \dfrac{1}{n^{2}}, limn1n2n=limnn2/n=limn(eln(n2/n))=limn(e(2/n)ln(n))=elimn(2/n)lnn \lim\limits_{n \to \infty} \sqrt[n]{\left| \dfrac{1}{n^{2}} \right|} = \lim\limits_{n \to \infty} n^{-2/n} = \lim\limits_{n \to \infty} (e^{\ln (n^{-2/n})}) = \lim\limits_{n \to \infty} (e^{ (-2/n) \ln (n)}) = e^{\lim\limits_{n \to \infty} (-2/n) \ln n}

The last equality holds because the exponential function is a continuous function. By L’Hopital’s Rule, limn(2/n)lnn=2limnlnnn=2limn1n=0 \lim\limits_{n \to \infty} (-2/n) \ln n = -2 \lim\limits_{n \to \infty} \dfrac{\ln n}{n} = -2 \lim\limits_{n \to \infty} \dfrac{1}{n} = 0 Thus, L=1L = 1. The series converges because it is the pp- series, which satisfies p=2p=2.

On the other hand, considering the series (n+1n)n\sum \left( \dfrac{n+1}{n} \right)^{n}, limn(n+1n)nn=limnn+1n=1 \lim\limits_{n \to \infty} \sqrt[n]{ \left( \dfrac{n+1}{n} \right)^{n} } = \lim\limits_{n \to \infty} \dfrac{n+1}{n} = 1

Thus, it is L=1L = 1, but since it satisfies limn(n+1n)n=limn(1+1n)n=e\lim\limits_{n \to \infty} \left( \dfrac{n+1}{n} \right)^{n} = \lim\limits_{n \to \infty} \left( 1 + \dfrac{1}{n} \right)^{n} = e by the divergence test, the series diverges. These two examples show that if L=1L = 1, one cannot determine the convergence of the series.

Proof

(a)

The idea of the proof is to compare it with a converging geometric series. Since L<1L \lt 1, there exists a positive number rr that satisfies L<r<1L \lt r \lt 1. Then, from limnann=L\lim\limits_{n \to \infty} \sqrt[n]{\left| a_{n} \right|} = L, the following holds for some sufficiently large NN.

ann<r,for all nN \sqrt[n]{\left| a_{n} \right|} \lt r, \quad \text{for all } n \ge N

Rewriting it,

an<rn,for all nN \left| a_{n} \right| \lt r^{n}, \quad \text{for all } n \ge N

However, the series n=Nrn\sum\limits_{n = N}^{\infty} r^{n} is a geometric series and satisfies r<1|r| \lt 1, so it converges. Therefore, by comparison test, n=Nan\sum\limits_{n = N}^{\infty} |a_{n}| also converges. In other words, an\sum a_{n} absolutely converges. (Finite terms before large NN do not affect the convergence of the series)

(b)

If L>1L > 1 or L=L = \infty, then the following holds for sufficiently large NN.

ann>1,for all nN \sqrt[n]{\left| a_{n} \right|} \gt 1, \quad \text{for all } n \ge N

    an>1,for all nN \implies \left| a_{n} \right| \gt 1, \quad \text{for all } n \ge N

Therefore, limnan0\lim\limits_{n \to \infty} a_{n} \ne 0, and by the divergence test, an\sum a_{n} diverges.


  1. James Stewart, Daniel Clegg, and Saleem Watson, Calculus (early transcendentals, 9E), p776-777 ↩︎