logo

Scaling Factors of Curvilinear Coordinates 📂Mathematical Physics

Scaling Factors of Curvilinear Coordinates

Buildup

In the curvilinear coordinate system, the scale factor is an element that multiplies each component so that they have dimensions of length. For instance, the polar coordinate system is represented by (r,θ)(r,\theta), where the distance the coordinates move as θ\theta changes is the length of the arc, which is l=rθl=r\theta. Here, things like rr are called scale factors. Let’s say the variable of an arbitrary coordinate system is (q1,q2,q3)(q_{1},q_{2},q_{3}). Then, using the scale factor, the infinitesimal length, area, and volume in any coordinate system can be expressed as follows.

dr=h1dq1q1^+h2dq2q2^+h3dq3q3^ds2=(h1dq1)2+(h2dq2)2+(h3dq3)2dV=h1h2h3dq1dq2dq3 \begin{align*} d\mathbf{r} &=h_{1}dq_{1}\hat{\mathbf{q}_{1}}+h_{2}dq_{2}\hat{\mathbf{q}_{2}}+h_{3}dq_{3}\hat{\mathbf{q}_{3}} \\ ds^{2} &=(h_{1}dq_{1})^{2}+(h_{2}dq_{2})^{2}+(h_{3}dq_{3})^{2} \\ dV &= h_{1}h_{2}h_{3}dq_{1}dq_{2}dq_{3} \end{align*}

At this time, hi=gii=rqirqih_{i}=\sqrt{g_{ii}}=\sqrt{\frac{ \partial \mathbf{r}}{ \partial q_{i} }\cdot \frac{ \partial \mathbf{r}}{ \partial q_{i} }} is. The scale factor, infinitesimal length, area, and volume in each coordinate system are as follows.

Formulas

  • Polar coordinate system:

    h1=1,h2=r h_{1}=1,\quad h_{2}=r

    dr=drr^+rdθθ^ds2=dr2+r2dθ2dV=rdrdθ \begin{align*} d\mathbf{r} &=dr\hat{\mathbf{r}}+rd\theta \hat{\boldsymbol{\theta}} \\ \\ ds^{2}&=dr^{2}+r^{2}d\theta^{2} \\ \\ dV&= rdrd\theta \end{align*}

  • Cylindrical coordinate system:

    h1=1,h2=ρ,h3=1 h_{1}=1, \quad h_{2}=\rho,\quad h_{3}=1

    dr=dρρ^+ρdϕϕ^+dzz^ds2=dρ2+ρ2dϕ2+dz2dV=ρdρdϕdz \begin{align*} d\mathbf{r}&=d\rho \hat{\mathbf{\rho}}+\rho d\phi \hat{\boldsymbol{\phi}}+dz\hat{\mathbf {z}} \\ \\ ds^{2}&=d\rho ^{2}+\rho ^{2}d\phi^{2}+dz^{2} \\ \\ dV&= \rho d\rho d\phi dz \end{align*}

  • Spherical coordinate system:

    h1=1,h2=r,h3=rsinθ h_{1}=1,\quad h_{2}=r,\quad h_{3}=r\sin\theta

    dr=drr^+rdθθ^+rsinθdϕϕ^ds2=dr2+r2dθ2+r2sin2θdϕ2dV=r2sinθdrdθdϕ \begin{align*} d\mathbf{r}&=dr \hat{\mathbf{r}}+r d\theta \hat{\boldsymbol{\theta}}+r\sin\theta d\phi\hat {\mathbf{\boldsymbol{\phi}}} \\ \\ ds^{2}&=dr ^{2}+r ^{2}d\theta^{2}+r^{2}\sin^{2}\theta d\phi^{2} \\ \\ dV&= r^{2}\sin\theta dr d \theta d \phi \end{align*}

Proof

The proof for the polar coordinate system is written in as much detail as possible, and the proofs for the others are written briefly.

5F5B3E523.png

Polar coordinate system

q1=rq_{1}=r, q2=θq_{2}=\theta, and the following holds true.

r=xx^+yy^=rcosθx^+rsinθy^ \mathbf{r}=x\hat{\mathbf{x}}+y\hat{\mathbf{y}}=r\cos \theta \hat{\mathbf{x}} + r \sin \theta \hat{\mathbf{y}}

Therefore, it is as follows.

h1=rq1rq1=rrrr=(rcosθx^+rsinθy^)r(rcosθx^+rsinθy^)r=(cosθx^+sinθy^)(cosθx^+sinθy^)=cos2θ+sin2θ=1h2=rq1rq1=rθrθ=(rcosθx^+rsinθy^)θ(rcosθx^+rsinθy^)θ=(rsinθx^+rcosθy^)(rsinθx^+rcosθy^)=r2sin2θ+r2cos2θ=r2=r \begin{align*} h_{1} &= \sqrt{\frac{ \partial \mathbf{r}}{ \partial q_{1}} \cdot \frac{ \partial \mathbf{r}}{ \partial q_{1} }} =\sqrt{\frac{ \partial \mathbf{r}}{ \partial r} \cdot \frac{ \partial \mathbf{r}}{ \partial r }} \\ &= \sqrt{\frac{ \partial (r\cos \theta \hat{\mathbf{x}} + r \sin \theta \hat{\mathbf{y}})}{ \partial r} \cdot \frac{ \partial (r\cos \theta \hat{\mathbf{x}} + r \sin \theta \hat{\mathbf{y}})}{ \partial r }} \\ &= \sqrt{(\cos \theta \hat{\mathbf{x}} + \sin \theta \hat{\mathbf{y}})\cdot(\cos \theta \hat{\mathbf{x}} + \sin \theta \hat{\mathbf{y}})} \\ &= \sqrt{\cos ^{2}\theta + \sin^{2}\theta} \\ &=1 \\ \\ h_{2}&=\sqrt{\frac{ \partial \mathbf{r}}{ \partial q_{1}} \cdot \frac{ \partial \mathbf{r}}{ \partial q_{1} }} =\sqrt{\frac{ \partial \mathbf{r}}{ \partial \theta} \cdot \frac{ \partial \mathbf{r}}{ \partial \theta }} \\ &= \sqrt{\frac{ \partial (r\cos \theta \hat{\mathbf{x}} + r \sin \theta \hat{\mathbf{y}})}{ \partial \theta} \cdot \frac{ \partial (r\cos \theta \hat{\mathbf{x}} + r \sin \theta \hat{\mathbf{y}})}{ \partial \theta }} \\ &= \sqrt{(-r\sin\theta \hat{\mathbf{x}} + r\cos \theta \hat{\mathbf{y}})\cdot(-r\sin\theta \hat{\mathbf{x}} + r\cos \theta \hat{\mathbf{y}})} \\ &= \sqrt{r^{2}\sin ^{2}\theta + r^{2}\cos^{2}\theta} \\ &=\sqrt{r^{2}} \\ &=r \end{align*}

Hence, the following formula is obtained.

dr=h1dq1q1^+h2dq2q2^=drr^+rdθθ^ds2=(h1dq1)2+(h2dq2)2=dr2+r2dθ2dV=h1h2dq1dq2=rdrdθ \begin{align*} d\mathbf{r}&=h_{1}dq_{1}\hat{\mathbf{q}_{1}} + h_{2}dq_{2}\hat{\mathbf{q}_{2}} \\ &=dr\hat{\mathbf{r}}+rd\theta \hat{\boldsymbol{\theta}} \\ \\ ds^{2}&=(h_{1}dq_{1})^{2}+(h_{2}dq_{2})^{2} \\ &=dr^{2}+r^{2}d\theta^{2} \\ \\ dV&=h_{1}h_{2}dq_{1}dq_{2} \\ &= rdrd\theta \end{align*}

Cylindrical coordinate system

q1=ρq_{1}=\rho, q2=ϕq_{2}=\phi, q3=zq_{3}=z, and the following holds true.

r=ρcosϕx^+ρsinϕy^+zz^ \mathbf{r}=\rho\cos \phi \hat{\mathbf{x}} + \rho \sin \phi \hat{\mathbf{y}} +z\hat{\mathbf{z}}

Therefore, h1h_{1}, h2h_{2} are derived similarly to the polar coordinate system.

h1=1,h2=r h_{1}=1,\quad h_{2}=r

Calculating h3h_{3} results in the following.

h3=rzrz=(z^)(z^)=1 \begin{align*} h_{3} &=\sqrt{\frac{ \partial \mathbf{r}}{ \partial z}\cdot \frac{ \partial \mathbf{r}}{ \partial z }} \\ &= \sqrt{(\hat{\mathbf{z}})\cdot(\hat{\mathbf{z}})} \\ &=1 \end{align*}

Therefore,

dr=dρρ^+ρdϕϕ^+dzz^ds2=dρ2+ρ2dϕ2+dz2dV=ρdρdϕdz \begin{align*} d\mathbf{r}&=d\rho \hat{\mathbf{\rho}}+\rho d\phi \hat{\boldsymbol{\phi}}+dz\hat{\mathbf{z}} \\ \\ ds^{2}&=d\rho ^{2}+\rho ^{2}d\phi^{2}+dz^{2} \\ \\ dV&= \rho d\rho d\phi dz \end{align*}

Spherical coordinate system

2.png

q1=rq_{1}=r, q2=θq_{2}=\theta, q3=ϕq_{3}=\phi, and the following holds true.

r=rsinθcosϕx^+rsinθsinϕy^+rcosθz^ \mathbf{r}=r\sin\theta\cos\phi \hat{\mathbf{x}} + r \sin \theta\sin \phi \hat{\mathbf{y}} +r\cos\theta\hat{\mathbf{z}}

Therefore, it is as follows.

h1=rrrr=sin2θcos2ϕ+sin2θsin2ϕ+cos2θ=sin2θ+cos2θ=1h2=rθrθ=r2cos2θcos2ϕ+r2cos2θsin2ϕ+r2sin2θ=r2cos2θ+r2sin2θ=rh3=rϕrϕ=r2sin2θsin2ϕ+r2sinθ2cos2ϕ=r2sin2θ=rsinθ \begin{align*} h_{1} &=\sqrt{\frac{ \partial \mathbf{r}}{ \partial r}\cdot \frac{ \partial \mathbf{r}}{ \partial r }} \\ &= \sqrt{\sin^2{\theta}\cos^{2}\phi +\sin^{2}\theta\sin^{2}\phi+\cos^{2}\theta} \\ &=\sqrt{\sin^{2}\theta+\cos^{2}\theta} \\ &=1 \\ \\ h_{2} &=\sqrt{\frac{ \partial \mathbf{r}}{ \partial \theta}\cdot \frac{ \partial \mathbf{r}}{ \partial \theta }} \\ &= \sqrt{r^{2}\cos^{2}\theta \cos^{2}\phi + r^{2}\cos^{2}\theta\sin ^{2}\phi+r^{2}\sin^{2}\theta} \\ &=\sqrt{r^{2}\cos^{2}\theta+r^{2}\sin^{2}\theta} \\ &=r \\ \\ h_{3}&=\sqrt{\frac{ \partial \mathbf{r}}{ \partial \phi}\cdot \frac{ \partial \mathbf{r}}{ \partial \phi }} \\ &=\sqrt{r^{2}\sin^{2}\theta \sin ^{2}\phi+r^{2}\sin\theta^{2}\cos^{2}\phi} \\ &= \sqrt{r^{2}\sin ^{2}\theta} \\ &=r\sin\theta \end{align*}

Hence, it is as follows.

dr=drr^+rdθθ^+rsinθdϕϕ^ds2=dr2+r2dθ2+r2sin2θdϕ2dV=r2sinθdrdθdϕ \begin{align*} d\mathbf{r}&=dr \hat{\mathbf{r}}+r d\theta \hat{\boldsymbol{\theta}}+r\sin\theta d\phi\hat{\mathbf{\boldsymbol{\phi}}} \\ \\ ds^{2}&=dr ^{2}+r ^{2}d\theta^{2}+r^{2}\sin^{2}\theta d\phi^{2} \\ \\ dV&= r^{2}\sin\theta dr d \theta d \phi \end{align*}