logo

Stability of Invariant Manifolds 📂Dynamics

Stability of Invariant Manifolds

Definition

Stability and Instability of Invariant Sets 1

Let’s define the two invariant sets with respect to a fixed point x\overline{x} of a dynamical system (T,X,φt)\left( T, X , \varphi^{t} \right) as follows. Ws(x):={x:φtxx,t+}Wu(x):={x:φtxx,t} \begin{align*} W^{s} \left( \overline{x} \right) :=& \left\{ x : \varphi^{t} x \to \overline{x} , t \to + \infty \right\} \\ W^{u} \left( \overline{x} \right) :=& \left\{ x : \varphi^{t} x \to \overline{x} , t \to - \infty \right\} \end{align*} We define Ws(x)W^{s} \left( \overline{x} \right) as the stable set of x\overline{x} and Wu(x)W^{u} \left( \overline{x} \right) as the unstable set of x\overline{x}.

Invariant Manifolds 2

Given a space Rn\mathbb{R}^{n} and a function f:RnRnf : \mathbb{R}^{n} \to \mathbb{R}^{n}, let’s assume that the following vector field is given by a differential equation. x˙=f(x) \dot{x} = f(x) Given a fixed point of the system represented by such a differential equation x\overline{x}, we classify the eigenvectors ee corresponding to each eigenvalue λ\lambda of the linearization matrix A:=Df(x)A := D f \left( \overline{x} \right) based on the real part Re(λ)\operatorname{Re} (\lambda), and represent their generation as follows. Es:=span{e:λe=Ae,Re(λ)<0}Eu:=span{e:λe=Ae,Re(λ)>0}Ec:=span{e:λe=Ae,Re(λ)=0} E^{s} := \text{span} \left\{ e : \lambda e = A e , \operatorname{Re} (\lambda) < 0 \right\} \\ E^{u} := \text{span} \left\{ e : \lambda e = A e , \operatorname{Re} (\lambda) > 0 \right\} \\ E^{c} := \text{span} \left\{ e : \lambda e = A e , \operatorname{Re} (\lambda) = 0 \right\} We refer to EsE^{s} as the stable manifold, EuE^{u} as the unstable manifold, and EcE^{c} as the center manifold.

Given a space Rn\mathbb{R}^{n} and a function g:RnRng : \mathbb{R}^{n} \to \mathbb{R}^{n}, let’s assume that the following vector field is given by a differential equation. xg(x) x \mapsto g(x) Given a fixed point x\overline{x} of such a system, we classify the eigenvectors ee corresponding to each eigenvalue λ\lambda of the linearization matrix B:=Dg(x)B := D g \left( \overline{x} \right) based on the absolute value λ\left| \lambda \right|, and represent their generation span\text{span} as follows. Es:=span{e:λe=Be,λ<1}Eu:=span{e:λe=Be,λ>1}Ec:=span{e:λe=Be,λ=1} E^{s} := \text{span} \left\{ e : \lambda e = B e , \left| \lambda \right| < 1 \right\} \\ E^{u} := \text{span} \left\{ e : \lambda e = B e , \left| \lambda \right| > 1 \right\} \\ E^{c} := \text{span} \left\{ e : \lambda e = B e , \left| \lambda \right| = 1 \right\} We refer to EsE^{s} as the stable manifold, EuE^{u} as the unstable manifold, and EcE^{c} as the center manifold.

Explanation

The subscript of EE, s,u,cs,u,c, derives from the initials of stable, unstable, and center, respectively, and the following holds true. Rn=EsEuEc\mathbb{R}^{n} = E^{s} \oplus E^{u} \oplus E^{c}

In dimensions 11 or 22, one might imagine getting closer or farther away, or approaching from one direction and leaving in another, but considering a general Euclidean space Rn\mathbb{R}^{n}, the concept of ‘direction’ becomes meaningless. Thus, we simply distinguish between entering or leaving, using the word manifold.

On the other hand, some textbooks use a concise definition3. When x\overline{x} is a periodic point of the map gg, the definitions are given as follows: S(x)\mathcal{S}(\overline{x}) is called the stable manifold of x\overline{x}, and U(x)\mathcal{U}(\overline{x}) is called the unstable manifold of x\overline{x}. S(x):={xRn:limkfk(x)fk(x)=0}U(x):={xRn:limkfk(x)fk(x)=0} \begin{align*} \mathcal{S} (\overline{x}) :=& \left\{ x \in \mathbb{R}^{n} : \lim_{k \to \infty} \left| f^{k} ( x ) - f^{k} ( \overline{x} ) \right| = 0 \right\} \\ \mathcal{U} (\overline{x}) :=& \left\{ x \in \mathbb{R}^{n} : \lim_{k \to \infty} \left| f^{-k} ( x ) - f^{-k} ( \overline{x} ) \right| = 0 \right\} \end{align*}


  1. Kuznetsov. (1998). Elements of Applied Bifurcation Theory: p46. ↩︎

  2. Wiggins. (2003). Introduction to Applied Nonlinear Dynamical Systems and Chaos Second Edition(2nd Edition): p30, 40. ↩︎

  3. Yorke. (1996). CHAOS: An Introduction to Dynamical Systems: p78. ↩︎