logo

Linear Forms 📂Linear Algebra

Linear Forms

Definition

Let VV be a nndimensional vector space. For a given constant aiR(or C)a_{i} \in \mathbb{R}(\text{or } \mathbb{C}), the following linear transformation A:VR(or C)A : V \to \mathbb{R}(\text{or } \mathbb{C}) is called a linear form.

A(x):=i=1naixi A(\mathbf{x}) := \sum\limits_{i=1}^{n} a_{i}x_{i}

In this case, x=[x1xn]T\mathbf{x} = \begin{bmatrix} x_{1} & \cdots & x_{n} \end{bmatrix}^{T}.

Generalization

For a given inner product space (V,<,>)(V, \left< \cdot, \cdot \right>) and aV\mathbf{a} \in V, the following linear functional A:VFA : V \to \mathbb{F} is called a linear form.

A(x)=<a,x> A(\mathbf{x}) = \left< \mathbf{a}, \mathbf{x} \right>

Here, F\mathbb{F} is a field of the vector space VV.

Matrix Form

If aia_{i}, xix_{i} are real numbers, then it is called a linear form on space Rn\mathbb{R}^{n}. Moreover, if constants and variables are represented as column vectors like a=[a1an]T\mathbf{a}=\begin{bmatrix} a_{1} & \cdots & a_{n} \end{bmatrix}^{T}, x=[x1xn]T\mathbf{x}=\begin{bmatrix} x_{1} & \cdots & x_{n} \end{bmatrix}^{T}, the linear form can be expressed as a matrix inner product.

ax=aTx=[a1an][x1xn]=i=1naixi \mathbf{a} \cdot \mathbf{x} = \mathbf{a}^{T} \mathbf{x} = \begin{bmatrix} a_{1} & \cdots & a_{n} \end{bmatrix} \begin{bmatrix} x_{1} \\ \vdots \\ x_{n} \end{bmatrix} =\sum \limits _{i=1}^{n} a_{i}x_{i}

See Also