Linear Forms
📂Linear Algebra Linear Forms Definition Let V V V be a n n n dimensional vector space . For a given constant a i ∈ R ( or C ) a_{i} \in \mathbb{R}(\text{or } \mathbb{C}) a i ∈ R ( or C ) , the following linear transformation A : V → R ( or C ) A : V \to \mathbb{R}(\text{or } \mathbb{C}) A : V → R ( or C ) is called a linear form .
A ( x ) : = ∑ i = 1 n a i x i
A(\mathbf{x}) := \sum\limits_{i=1}^{n} a_{i}x_{i}
A ( x ) := i = 1 ∑ n a i x i
In this case, x = [ x 1 ⋯ x n ] T \mathbf{x} = \begin{bmatrix} x_{1} & \cdots & x_{n} \end{bmatrix}^{T} x = [ x 1 ⋯ x n ] T .
Generalization For a given inner product space ( V , < ⋅ , ⋅ > ) (V, \left< \cdot, \cdot \right>) ( V , ⟨ ⋅ , ⋅ ⟩ ) and a ∈ V \mathbf{a} \in V a ∈ V , the following linear functional A : V → F A : V \to \mathbb{F} A : V → F is called a linear form .
A ( x ) = < a , x >
A(\mathbf{x}) = \left< \mathbf{a}, \mathbf{x} \right>
A ( x ) = ⟨ a , x ⟩
Here, F \mathbb{F} F is a field of the vector space V V V .
If a i a_{i} a i , x i x_{i} x i are real numbers, then it is called a linear form on space R n \mathbb{R}^{n} R n . Moreover, if constants and variables are represented as column vectors like a = [ a 1 ⋯ a n ] T \mathbf{a}=\begin{bmatrix} a_{1} & \cdots & a_{n} \end{bmatrix}^{T} a = [ a 1 ⋯ a n ] T , x = [ x 1 ⋯ x n ] T \mathbf{x}=\begin{bmatrix} x_{1} & \cdots & x_{n} \end{bmatrix}^{T} x = [ x 1 ⋯ x n ] T , the linear form can be expressed as a matrix inner product .
a ⋅ x = a T x = [ a 1 ⋯ a n ] [ x 1 ⋮ x n ] = ∑ i = 1 n a i x i
\mathbf{a} \cdot \mathbf{x} = \mathbf{a}^{T} \mathbf{x} =
\begin{bmatrix} a_{1} & \cdots & a_{n} \end{bmatrix}
\begin{bmatrix} x_{1} \\ \vdots \\ x_{n} \end{bmatrix}
=\sum \limits _{i=1}^{n} a_{i}x_{i}
a ⋅ x = a T x = [ a 1 ⋯ a n ] x 1 ⋮ x n = i = 1 ∑ n a i x i
See Also