logo

Properties of Limits of Functions in Metric Spaces 📂MetricSpace

Properties of Limits of Functions in Metric Spaces

Theorem 1

Let (X,d)(X,d) be a metric space, EXE\subset X a subset, and pp an accumulation point of EE. Suppose two complex-valued functions defined on EE, f:ECf:E\to \mathbb{C} and g:ECg: E\to \mathbb{C}, are given. Furthermore, assume that these two functions have the following limits at pp.

limxpf(x)=Aandlimxpg(x)=B \begin{equation} \lim \limits_{x \to p}f(x)=A \quad \text{and} \quad \lim \limits_{x \to p}g(x)=B \tag{1} \label{thm1} \end{equation}

Then, the following holds.

(a) limxp(f+g)(x)=A+B\lim \limits_{x \to p}(f+g)(x)=A+B

(b) limxp(fg)(x)=AB\lim \limits_{x \to p}(fg)(x)=AB

(c) limxp(fg)(x)=AB, B0\lim \limits_{x \to p}\left( \frac{f}{g} \right)(x) = \frac{A}{B},\ B\ne 0

Proof

(a)

Lemma 1

Let’s assume XX, YY, EE, and ff, pp as described in the definition. Then, the following two propositions are equivalent.

By Lemma 1, showing (1a) is equivalent to showing that the sequence {(f+g)(pn)}\left\{ (f+g)(p_{n}) \right\} converges to A+BA+B for all sequences {pn}\left\{ p_{n} \right\} converging to pp. However, considering (thm1)\eqref{thm1}, the sequences {f(pn)}\left\{ f(p_{n}) \right\} and {g(pn)}\left\{ g(p_{n}) \right\} converge to AA and BB, respectively.

Lemma 2

Let {sn}\left\{ s_{n} \right\}, {tn}\left\{ t_{n} \right\} be sequences of real (or complex) numbers, and suppose limnsn=s\lim \limits_{n\to\infty} s_{n}=s, limntn=t\lim\limits_{n\to\infty}t_{n}=t. Then, the following holds.

  • limn(sn+tn)=s+t\lim \limits_{n\to\infty}(s_{n}+t_{n})=s+t

  • limnsntn=st\lim \limits_{n\to\infty} s_{n}t_{n}=st

  • sn0,s0,limn1sn=1s\forall s_{n}\ne 0,s\ne0,\quad \lim \limits_{n\to\infty}\frac{1}{s_{n}}=\frac{1}{s}

By the first property of Lemma 2, for all sequences {pn}\left\{ p_{n} \right\} converging to pp, the following holds.

limn(f(pn)+g(pn))=A+B \lim \limits_{n\to\infty} (f(p_{n})+g(p_{n}))=A+B

(b) (c)

Similarly, each of the second and third properties of Lemma 2 holds.

Theorem 2

Similarly to Theorem 1, let’s assume f:ERk\mathbf{f}:E \to \mathbb{R}^{k}, g:ERk\mathbf{g}:E\to \mathbb{R}^{k}. And consider

limxpf(x)=Aandlimxpg(x)=B \lim \limits_{x \to p}\mathbf{f}(x)=\mathbf{A} \quad \text{and} \quad \lim \limits_{x \to p} \mathbf{g}(x)=\mathbf{B}

Then, the following holds.

limxp(fg)(x)=AB \lim \limits_{x \to p} (\mathbf{f}\cdot \mathbf{g})(x)=\mathbf{A}\cdot \mathbf{B}


Using the properties of sequences converging in the Euclidean space Rk\mathbb{R}^{k}, the result follows immediately and does not require a separate proof.