Integrable Functions and Absolute Values
📂Analysis Integrable Functions and Absolute Values This article is based on Riemann-Stieltjes integration . If set as α = α ( x ) = x \alpha=\alpha (x)=x α = α ( x ) = x , it equals the Riemann integration .
Theorem Let function f f f be Riemann(-Stieltjes) integrable over the interval [ a , b ] [a,b] [ a , b ] . Then
(a) ∣ f ∣ \left|f\right| ∣ f ∣ is also integrable over [ a , b ] [a,b] [ a , b ] .
(b) Furthermore, the following inequality holds:
∣ ∫ a b f d α ∣ ≤ ∫ a b ∣ f ∣ d α
\left|\int_{a}^{b}fd\alpha \right| \le \int_{a}^{b}\left| f\right| d\alpha
∫ a b fd α ≤ ∫ a b ∣ f ∣ d α
Proof (a) Integrability is defined for bounded functions. Hence, assuming that f f f is integrable implies that f f f is bounded. Let’s consider M , m M, m M , m as the upper and lower bounds.
M = sup [ a , b ] f and m = inf [ a , b ] f
M=\sup_{[a,b]} f \quad \text{and} \quad m= \inf_{[a,b]}f
M = [ a , b ] sup f and m = [ a , b ] inf f
Let’s say ϕ ( t ) = ∣ t ∣ \phi (t)=\left| t \right| ϕ ( t ) = ∣ t ∣ . Then ϕ \phi ϕ is a function that is continuous in [ m , M ] [m,M] [ m , M ] . Moreover, the following holds:
ϕ ∘ f = ∣ f ∣
\phi \circ f=\left| f\right|
ϕ ∘ f = ∣ f ∣
Since the composition with a continuous function preserves integrability , ∣ f ∣ |f| ∣ f ∣ is integrable over [ a , b ] [a,b] [ a , b ] .
■
(b) Let there be a positive number ε > 0 \varepsilon >0 ε > 0 . Then, according to the necessary and sufficient condition for integrability , there exists a division P = { a = x 0 , ⋯ , x n = b } P=\left\{ a=x_{0},\cdots,x_{n}=b \right\} P = { a = x 0 , ⋯ , x n = b } of [ a , b ] [a,b] [ a , b ] that satisfies the following equation:
U ( P , ∣ f ∣ , α ) − L ( P , ∣ f ∣ , α ) < ε
U(P,\left| f\right|,\alpha) - L(P,\left| f\right|,\alpha) < \varepsilon
U ( P , ∣ f ∣ , α ) − L ( P , ∣ f ∣ , α ) < ε
Moreover, the below inequality holds :
U ( P , ∣ f ∣ , α ) < ∫ a b ∣ f ∣ d α + ε
U(P,\left| f \right|,\alpha) < \int_{a}^{b}\left| f \right| d\alpha +\varepsilon
U ( P , ∣ f ∣ , α ) < ∫ a b ∣ f ∣ d α + ε
Then, by the definition of integration and upper sum , the following equation holds:
∫ a b f d α ≤ U ( P , f , α ) ≤ U ( P , ∣ f ∣ , α ) < ∫ a b ∣ f ∣ d α + ε
\int_{a}^{b} f d\alpha \le U(P,f,\alpha) \le U(P,\left| f \right|,\alpha ) <\int_{a}^{b}\left| f \right| d\alpha +\varepsilon
∫ a b fd α ≤ U ( P , f , α ) ≤ U ( P , ∣ f ∣ , α ) < ∫ a b ∣ f ∣ d α + ε
Furthermore, if f f f is integrable then − f -f − f is also integrable , thus the following equation holds:
− ∫ a b f d α = ∫ a b ( − f ) d α ≤ U ( P , − f , α ) ≤ U ( P , ∣ f ∣ , α ) < ∫ a b ∣ f ∣ d α + ε
-\int_{a}^{b} f d\alpha=\int_{a}^{b}(-f)d\alpha \le U(P,-f,\alpha) \le U(P,\left| f \right|,\alpha ) <\int_{a}^{b}\left| f \right| d\alpha +\varepsilon
− ∫ a b fd α = ∫ a b ( − f ) d α ≤ U ( P , − f , α ) ≤ U ( P , ∣ f ∣ , α ) < ∫ a b ∣ f ∣ d α + ε
Then, since ε \varepsilon ε is any positive number, the below two equations hold:
∫ a b f d α ≤ ∫ a b ∣ f ∣ d α − ∫ a b f d α ≤ ∫ a b ∣ f ∣ d α
\begin{align*}
\int_{a}^{b}f d\alpha &\le \int _{a}^{b} \left| f \right| d\alpha
\\ -\int_{a}^{b}f d\alpha &\le \int _{a}^{b} \left| f \right| d\alpha
\end{align*}
∫ a b fd α − ∫ a b fd α ≤ ∫ a b ∣ f ∣ d α ≤ ∫ a b ∣ f ∣ d α
Therefore, we obtain the following:
∣ ∫ a b f d α ∣ ≤ ∫ a b ∣ f ∣ d α
\left| \int_{a}^{b}fd\alpha \right| \le \int_{a}^{b}\left| f \right| d\alpha
∫ a b fd α ≤ ∫ a b ∣ f ∣ d α
■