logo

Integrable Functions and Absolute Values 📂Analysis

Integrable Functions and Absolute Values

This article is based on Riemann-Stieltjes integration. If set as α=α(x)=x\alpha=\alpha (x)=x, it equals the Riemann integration.

Theorem1

Let function ff be Riemann(-Stieltjes) integrable over the interval [a,b][a,b]. Then

  • (a) f\left|f\right| is also integrable over [a,b][a,b].

  • (b) Furthermore, the following inequality holds:

    abfdαabfdα \left|\int_{a}^{b}fd\alpha \right| \le \int_{a}^{b}\left| f\right| d\alpha

Proof

(a)

Integrability is defined for bounded functions. Hence, assuming that ff is integrable implies that ff is bounded. Let’s consider M,mM, m as the upper and lower bounds.

M=sup[a,b]fandm=inf[a,b]f M=\sup_{[a,b]} f \quad \text{and} \quad m= \inf_{[a,b]}f

Let’s say ϕ(t)=t\phi (t)=\left| t \right|. Then ϕ\phi is a function that is continuous in [m,M][m,M]. Moreover, the following holds:

ϕf=f \phi \circ f=\left| f\right|

Since the composition with a continuous function preserves integrability, f|f| is integrable over [a,b][a,b].

(b)

Let there be a positive number ε>0\varepsilon >0. Then, according to the necessary and sufficient condition for integrability, there exists a division P={a=x0,,xn=b}P=\left\{ a=x_{0},\cdots,x_{n}=b \right\} of [a,b][a,b] that satisfies the following equation:

U(P,f,α)L(P,f,α)<ε U(P,\left| f\right|,\alpha) - L(P,\left| f\right|,\alpha) < \varepsilon

Moreover, the below inequality holds:

U(P,f,α)<abfdα+ε U(P,\left| f \right|,\alpha) < \int_{a}^{b}\left| f \right| d\alpha +\varepsilon

Then, by the definition of integration and upper sum, the following equation holds:

abfdαU(P,f,α)U(P,f,α)<abfdα+ε \int_{a}^{b} f d\alpha \le U(P,f,\alpha) \le U(P,\left| f \right|,\alpha ) <\int_{a}^{b}\left| f \right| d\alpha +\varepsilon

Furthermore, if ff is integrable then f-f is also integrable, thus the following equation holds:

abfdα=ab(f)dαU(P,f,α)U(P,f,α)<abfdα+ε -\int_{a}^{b} f d\alpha=\int_{a}^{b}(-f)d\alpha \le U(P,-f,\alpha) \le U(P,\left| f \right|,\alpha ) <\int_{a}^{b}\left| f \right| d\alpha +\varepsilon

Then, since ε\varepsilon is any positive number, the below two equations hold:

abfdαabfdαabfdαabfdα \begin{align*} \int_{a}^{b}f d\alpha &\le \int _{a}^{b} \left| f \right| d\alpha \\ -\int_{a}^{b}f d\alpha &\le \int _{a}^{b} \left| f \right| d\alpha \end{align*}

Therefore, we obtain the following:

abfdαabfdα \left| \int_{a}^{b}fd\alpha \right| \le \int_{a}^{b}\left| f \right| d\alpha


  1. Walter Rudin, Principles of Mathematical Analysis (3rd Edition, 1976), p129 ↩︎