logo

Relationships between the Roots and Coefficients of Quadratic/Tertiary/nth Degree Equations 📂Abstract Algebra

Relationships between the Roots and Coefficients of Quadratic/Tertiary/nth Degree Equations

Formulas

Relationship Between Roots and Coefficients of a Quadratic Equation

Let’s consider the roots of the quadratic equation ax2+bx+c=0ax^{2}+bx+c=0 to be α\alpha and β\beta. Then the following relationship holds true.

α+β=ba&αβ=ca \alpha+\beta=-\frac{b}{a}\quad \& \quad \alpha\beta= \frac{ c}{a}

Relationship Between Roots and Coefficients of a Cubic Equation

Let’s consider the roots of the cubic equation ax3+bx2+cx+d=0ax^{3}+bx^{2}+cx+d=0 to be α\alpha, β\beta, and γ\gamma. Then the following relationship holds true.

α+β+γ=ba&αβ+βγ+γα=ca&αβγ=da \alpha + \beta + \gamma = -\frac{b}{a}\quad \& \quad \alpha\beta + \beta \gamma +\gamma \alpha = \frac{c}{a}\quad \& \quad \alpha \beta \gamma = -\frac{d}{a}

Proof

Quadratic Equation

A quadratic equation whose leading coefficient is aa and whose roots are α\alpha and β\beta can be expressed as follows.

a(xα)(xβ)=0 a(x-\alpha) ( x-\beta)=0

Expanding the left-hand side gives

a(xα)(xβ)= a[x2(α+β)x+αβ]= ax2a(α+β)x+aαβ \begin{align*} a(x-\alpha) (x -\beta) =&\ a \left[ x^{2}-(\alpha +\beta)x+\alpha \beta \right] \\ =&\ ax^{2} -a(\alpha + \beta) x +a\alpha \beta \end{align*}

Therefore,

b=a(α+β)&aαβ=c b=-a(\alpha + \beta)\quad \& \quad a\alpha\beta=c

Arranging the above expression in terms of the roots gives

α+β=ba&αβ=ca \alpha+\beta=-\frac{b}{a}\quad \& \quad \alpha\beta= \frac{ c}{a}

Cubic Equation

The proof method is similar to that of the quadratic equation. A cubic equation whose leading coefficient is aa and whose roots are α\alpha, β\beta, and γ\gamma can be expressed as follows.

a(xα)(xβ)(xγ)=0 a(x-\alpha) (x-\beta) (x-\gamma)=0

Expanding the left-hand side gives

a(xα)(xβ)(xγ)=\a[x2(α+β)x+αβ](xγ)= a[x2(α+β+γ)x2+(αβ+βγ+γα)xαβγ]= ax2a(α+β+γ)x2+a(αβ+βγ+γα)xaαβγ \begin{align*} a(x-\alpha) (x-\beta) (x-\gamma) =&\a[x^{2}-(\alpha+\beta)x+\alpha \beta] (x-\gamma) \\ =&\ a\left[x^{2}-(\alpha + \beta + \gamma )x^{2}+(\alpha\beta + \beta\gamma + \gamma \alpha)x-\alpha\beta\gamma \right] \\ =&\ ax^{2}-a(\alpha + \beta + \gamma )x^{2}+a(\alpha\beta + \beta\gamma + \gamma \alpha)x-a\alpha\beta\gamma \end{align*}

Therefore,

b=a(α+β+γ)&c=a(αβ+βγ+γα)&d=aαβγ b=-a(\alpha+\beta + \gamma) \quad \& \quad c=a(\alpha\beta+\beta \gamma +\gamma \alpha) \quad \& \quad d=-a\alpha\beta\gamma

Arranging the above expression in terms of the roots gives

α+β+γ=ba&αβ+βγ+γα=ca&αβγ=da \alpha + \beta + \gamma = -\frac{b}{a}\quad \& \quad \alpha\beta + \beta \gamma +\gamma \alpha = \frac{c}{a}\quad \& \quad \alpha \beta \gamma = -\frac{d}{a}

Relationship Between Roots and Coefficients of Equations of Fourth Degree or Higher

From the above two formulas, it can be inferred that the relationship between the roots and coefficients of a quadratic equation av4+bx3+cx2+dx+e=0av^{4}+bx^{3}+cx^{2}+dx+e=0 with roots α\alpha, β\beta, γ\gamma, and δ\delta would be as follows, and it is indeed the case.

α+β+γ+δ=ba&αβ+βγ+γδ+δα=caαβγ+βγδ+γδα+δαβ=ca&αβγδ=da \begin{align*} \alpha+\beta+\gamma+\delta= -\frac{b}{a}&& \& && \alpha\beta+\beta\gamma+\gamma\delta + \delta\alpha=\frac{c}{a} \\ \alpha\beta\gamma + \beta\gamma\delta+\gamma\delta\alpha+\delta\alpha\beta=-\frac{c}{a} && \& && \alpha\beta\gamma\delta=\frac{d}{a} \end{align*}

Of course, the same method applies to any polynomial of degree nn. If the leading coefficient is a, b, c, d, e, f, a,\ b,\ c,\ d,\ e,\ f,\ \cdots, then

모든 근의 합=ba모든 ‘두 근의 곱’의 합= ca모든 ‘세 근의 곱’의 합= da모든 ‘네 근의 곱’의 합= ea모든 ‘다섯 근의 곱’의 합= fa \begin{align*} \text{모든 근의 합} =&-\frac{b}{a} \\ \text{모든 ‘두 근의 곱’의 합} =&\ \frac{c}{a} \\ \text{모든 ‘세 근의 곱’의 합} =&\ -\frac{d}{a} \\ \text{모든 ‘네 근의 곱’의 합} =&\ \frac{e}{a} \\ \text{모든 ‘다섯 근의 곱’의 합} =&\ -\frac{f}{a} \\ \vdots& \end{align*}