Mean and Variance of the t-Distribution
📂Probability Distribution Mean and Variance of the t-Distribution X ∼ t ( ν ) X \sim t (\nu) X ∼ t ( ν ) if
E ( X ) = 0 , ν > 1 Var ( X ) = ν ν − 2 , ν > 2
E(X) = 0 \qquad , \nu >1
\\ \Var(X) = {{ \nu } \over { \nu - 2 }} \qquad , \nu > 2
E ( X ) = 0 , ν > 1 Var ( X ) = ν − 2 ν , ν > 2
Derivation Strategy: Similar to the chi-squared distribution, the t-distribution also has known moment-generating functions, which we utilize.
Moment of the t-distribution : Assume two random variables W , V W,V W , V are independent and W ∼ N ( 0 , 1 ) W \sim N(0,1) W ∼ N ( 0 , 1 ) , V ∼ χ 2 ( r ) V \sim \chi^{2} (r) V ∼ χ 2 ( r ) . If k < r k < r k < r , then T : = W V / r \displaystyle T := { {W} \over {\sqrt{V/r} } } T := V / r W has the k k k th moment existing
E T k = E W k 2 − k / 2 Γ ( r 2 − k 2 ) Γ ( r 2 ) r − k / 2
E T^{k} = E W^{k} {{ 2^{-k/2} \Gamma \left( {{ r } \over { 2 }} - {{ k } \over { 2 }} \right) } \over { \Gamma \left( {{ r } \over { 2 }} \right) r^{-k/2} }}
E T k = E W k Γ ( 2 r ) r − k /2 2 − k /2 Γ ( 2 r − 2 k )
Mean If we consider r = ν r = \nu r = ν , since 1 = k < r = ν 1 = k < r = \nu 1 = k < r = ν , E T 1 ET^{1} E T 1 exists, and W W W follows a standard normal distribution N ( 0 , 1 ) N(0,1) N ( 0 , 1 ) , thus E W 1 = 0 EW^{1} = 0 E W 1 = 0 . Therefore, E T 1 = 0 ET^{1} = 0 E T 1 = 0 .
■
Variance If k = 2 k=2 k = 2 and W W W follows a standard normal distribution, then E W 2 = 1 + 0 2 EW^{2} = 1 + 0^{2} E W 2 = 1 + 0 2 so
E T 2 = E W 2 2 − 2 / 2 Γ ( ν 2 − 2 2 ) Γ ( ν 2 ) ν − 2 / 2 = 1 ν 2 Γ ( ν − 1 2 ) Γ ( ν 2 ) = ν 2 1 ν 2 − 1 = ν ν − 2
\begin{align*}
ET^{2} =& EW^{2} {{ 2^{-2/2} \Gamma \left( {{ \nu } \over { 2 }} - {{ 2 } \over { 2 }} \right) } \over { \Gamma \left( {{ \nu } \over { 2 }} \right) \nu^{-2/2} }}
\\ =& 1 {{ \nu } \over { 2 }} {{ \Gamma \left( {{ \nu - 1 } \over { 2 }} \right) } \over { \Gamma \left( {{ \nu } \over { 2 }} \right) }}
\\ =& {{ \nu } \over { 2 }} {{ 1 } \over { {{ \nu } \over { 2 }} - 1 }}
\\ =& {{ \nu } \over { \nu - 2 }}
\end{align*}
E T 2 = = = = E W 2 Γ ( 2 ν ) ν − 2/2 2 − 2/2 Γ ( 2 ν − 2 2 ) 1 2 ν Γ ( 2 ν ) Γ ( 2 ν − 1 ) 2 ν 2 ν − 1 1 ν − 2 ν
■