logo

Mean and Variance of the t-Distribution 📂Probability Distribution

Mean and Variance of the t-Distribution

Formulas

Xt(ν)X \sim t (\nu) if E(X)=0,ν>1Var(X)=νν2,ν>2 E(X) = 0 \qquad , \nu >1 \\ \Var(X) = {{ \nu } \over { \nu - 2 }} \qquad , \nu > 2

Derivation

Strategy: Similar to the chi-squared distribution, the t-distribution also has known moment-generating functions, which we utilize.

Moment of the t-distribution: Assume two random variables W,VW,V are independent and WN(0,1)W \sim N(0,1), Vχ2(r)V \sim \chi^{2} (r). If k<rk < r, then T:=WV/r\displaystyle T := { {W} \over {\sqrt{V/r} } } has the kkth moment existing ETk=EWk2k/2Γ(r2k2)Γ(r2)rk/2 E T^{k} = E W^{k} {{ 2^{-k/2} \Gamma \left( {{ r } \over { 2 }} - {{ k } \over { 2 }} \right) } \over { \Gamma \left( {{ r } \over { 2 }} \right) r^{-k/2} }}


Mean

If we consider r=νr = \nu, since 1=k<r=ν1 = k < r = \nu, ET1ET^{1} exists, and WW follows a standard normal distribution N(0,1)N(0,1), thus EW1=0EW^{1} = 0. Therefore, ET1=0ET^{1} = 0.

Variance

If k=2k=2 and WW follows a standard normal distribution, then EW2=1+02EW^{2} = 1 + 0^{2} so ET2=EW222/2Γ(ν222)Γ(ν2)ν2/2=1ν2Γ(ν12)Γ(ν2)=ν21ν21=νν2 \begin{align*} ET^{2} =& EW^{2} {{ 2^{-2/2} \Gamma \left( {{ \nu } \over { 2 }} - {{ 2 } \over { 2 }} \right) } \over { \Gamma \left( {{ \nu } \over { 2 }} \right) \nu^{-2/2} }} \\ =& 1 {{ \nu } \over { 2 }} {{ \Gamma \left( {{ \nu - 1 } \over { 2 }} \right) } \over { \Gamma \left( {{ \nu } \over { 2 }} \right) }} \\ =& {{ \nu } \over { 2 }} {{ 1 } \over { {{ \nu } \over { 2 }} - 1 }} \\ =& {{ \nu } \over { \nu - 2 }} \end{align*}