logo

Riemann Hypothesis and Trivial Roots of the Riemann Zeta Function 📂Functions

Riemann Hypothesis and Trivial Roots of the Riemann Zeta Function

Formula

The following is called the Riemann functional equation. ζ(s)=2sπs1sin(πs2)Γ(1s)ζ(1s) \zeta (s) = 2^{s} \pi^{s - 1} \sin \left( {{ \pi s } \over { 2 }} \right) \Gamma (1-s) \zeta (1-s)


Description

In the Riemann functional equation, if s2Zs \in 2 \mathbb{Z} then sin(πs2)=0\displaystyle \sin \left( {{ \pi s } \over { 2 }} \right) = 0, so naturally one might think ζ(s)=0\zeta (s) = 0. However, when s=0s = 0, the right-hand side has ζ(10)\zeta (1 - 0), thus it doesn’t even get defined, let alone being a root, and when s>0s > 0,

Simple pole of the gamma function: The domain of the Gamma function as a complex function, Γ\Gamma, is as follows. C(ZN)=C{0,1,2,} \mathbb{C} \setminus \left( \mathbb{Z} \setminus \mathbb{N} \right) = \mathbb{C} \setminus \left\{ 0 , -1, -2, \cdots \right\} Moreover, the set of singular points of Γ\Gamma, (ZN)\left( \mathbb{Z} \setminus \mathbb{N} \right), is a set of simple poles. Γ(1z)=πΓ(z)sinπz \Gamma (1-z) = {\frac{ \pi }{ \Gamma (z) \sin \pi z }}

According to this, the simple pole Γ(1s)\Gamma (1-s) of 1sinπs\displaystyle {\frac{ 1 }{ \sin \pi s }} cancels out the sine term sin(πs2)\displaystyle \sin \left( {{ \pi s } \over { 2 }} \right), preventing it from being a root. Hence, all the remaining negative even numbers s2Ns \in - 2\mathbb{N} become the roots of ζ\zeta, which are called trivial roots of the Riemann zeta function. The famous Riemann Hypothesis is a hypothesis about the non-trivial roots, excluding these trivial ones.

Derivation1

Definition and symmetry of the Riemann Xi function: The function defined as follows, ξ\xi, is called the Riemann Xi function. ξ(s):=12s(s1)πs/2ζ(s)Γ(s2) \xi (s) := {{ 1 } \over { 2 }} s ( s-1) \pi^{-s/2} \zeta (s) \Gamma \left( {{ s } \over { 2 }} \right) ξ(1s)=ξ(s) \xi ( 1 - s) = \xi (s)

By symmetry, πs/2Γ(s2)ζ(s)=π1/2+s/2Γ(12s2)ζ(1s) \pi^{-s/2} \Gamma \left( {{ s } \over { 2 }} \right) \zeta (s) = \pi^{-1/2 + s/2} \Gamma \left( {{ 1 } \over { 2 }} - {{ s } \over { 2 }} \right) \zeta (1-s) Multiplying both sides by πs/2\pi^{s/2}, Γ(s2)ζ(s)=π1/2+sΓ(12s2)ζ(1s) \Gamma \left( {{ s } \over { 2 }} \right) \zeta (s) = \pi^{-1/2 + s} \Gamma \left( {{ 1 } \over { 2 }} - {{ s } \over { 2 }} \right) \zeta (1-s)

Euler’s reflection formula: Γ(p)Γ(1p)=πsin(πp) \Gamma (p) \Gamma (1-p) = {{ \pi } \over { \sin (\pi p) }}

When p=s/2\displaystyle p = s/2 in Euler’s reflection formula, Γ(s/2)Γ(1s/2)=πsin(πs/2) \Gamma (s/2) \Gamma (1-s/2) = {{ \pi } \over { \sin (\pi s/2) }} Thus, ζ(s)=π1/2+sΓ(12s2)ζ(1s)1πΓ(1s/2)sin(πs/2)=π3/2+sΓ(1s2)Γ(1s2)sin(πs2)ζ(1s)() \begin{align*} \zeta (s) =& \pi^{-1/2 + s} \Gamma \left( {{ 1 } \over { 2 }} - {{ s } \over { 2 }} \right) \zeta (1-s) {{ 1 } \over { \pi }} \Gamma (1-s/2) \sin (\pi s / 2) & \\ =& \pi^{-3/2 + s} \Gamma \left( {{ 1 - s } \over { 2 }} \right) \Gamma \left( 1 - {{ s } \over { 2 }} \right) \sin \left( {{ \pi s } \over { 2 }} \right) \zeta (1-s) & \cdots (\ast) \end{align*}

Legendre duplication formula: Γ(2r)=22r1πΓ(r)Γ(12+r) \Gamma (2r) = {{2^{2r-1} } \over { \sqrt{ \pi } } } \Gamma \left( r \right) \Gamma \left( {{1} \over {2}} + r \right)

When r=1s2\displaystyle r= {{ 1-s } \over { 2 }} in the Legendre duplication formula, Γ(1s)=2sπ1/2Γ(1s2)Γ(1s2) \Gamma (1-s) = 2^{-s} \pi^{-1/2} \Gamma \left( {{ 1-s } \over { 2 }} \right) \Gamma \left( 1- {{ s } \over { 2 }} \right) Thus, substituting for ()(\ast), ζ(s)=π3/2+sΓ(1s2)Γ(1s2)sin(πs2)ζ(1s)=π3/2+s2sπ+1/2Γ(1s)sin(πs2)ζ(1s)=2sπs1sin(πs2)Γ(1s)ζ(1s) \begin{align*} \zeta (s) =& \pi^{-3/2 + s} \Gamma \left( {{ 1 - s } \over { 2 }} \right) \Gamma \left( 1 - {{ s } \over { 2 }} \right) \sin \left( {{ \pi s } \over { 2 }} \right) \zeta (1-s) \\ =& \pi^{-3/2 + s} 2^{s} \pi^{+1/2} \Gamma ( 1-s) \sin \left( {{ \pi s } \over { 2 }} \right) \zeta (1-s) \\ =& 2^{s} \pi^{s-1} \sin \left( {{ \pi s } \over { 2 }} \right) \Gamma ( 1-s) \zeta (1-s) \end{align*}