Riemann Hypothesis and Trivial Roots of the Riemann Zeta Function
📂Functions Riemann Hypothesis and Trivial Roots of the Riemann Zeta Function The following is called the Riemann functional equation .
ζ ( s ) = 2 s π s − 1 sin ( π s 2 ) Γ ( 1 − s ) ζ ( 1 − s )
\zeta (s) = 2^{s} \pi^{s - 1} \sin \left( {{ \pi s } \over { 2 }} \right) \Gamma (1-s) \zeta (1-s)
ζ ( s ) = 2 s π s − 1 sin ( 2 π s ) Γ ( 1 − s ) ζ ( 1 − s )
Description In the Riemann functional equation, if s ∈ 2 Z s \in 2 \mathbb{Z} s ∈ 2 Z then sin ( π s 2 ) = 0 \displaystyle \sin \left( {{ \pi s } \over { 2 }} \right) = 0 sin ( 2 π s ) = 0 , so naturally one might think ζ ( s ) = 0 \zeta (s) = 0 ζ ( s ) = 0 . However, when s = 0 s = 0 s = 0 , the right-hand side has ζ ( 1 − 0 ) \zeta (1 - 0) ζ ( 1 − 0 ) , thus it doesn’t even get defined, let alone being a root, and when s > 0 s > 0 s > 0 ,
Simple pole of the gamma function : The domain of the Gamma function as a complex function , Γ \Gamma Γ , is as follows.
C ∖ ( Z ∖ N ) = C ∖ { 0 , − 1 , − 2 , ⋯ }
\mathbb{C} \setminus \left( \mathbb{Z} \setminus \mathbb{N} \right) = \mathbb{C} \setminus \left\{ 0 , -1, -2, \cdots \right\}
C ∖ ( Z ∖ N ) = C ∖ { 0 , − 1 , − 2 , ⋯ }
Moreover, the set of singular points of Γ \Gamma Γ , ( Z ∖ N ) \left( \mathbb{Z} \setminus \mathbb{N} \right) ( Z ∖ N ) , is a set of simple poles .
Γ ( 1 − z ) = π Γ ( z ) sin π z
\Gamma (1-z) = {\frac{ \pi }{ \Gamma (z) \sin \pi z }}
Γ ( 1 − z ) = Γ ( z ) sin π z π
According to this, the simple pole Γ ( 1 − s ) \Gamma (1-s) Γ ( 1 − s ) of 1 sin π s \displaystyle {\frac{ 1 }{ \sin \pi s }} sin π s 1 cancels out the sine term sin ( π s 2 ) \displaystyle \sin \left( {{ \pi s } \over { 2 }} \right) sin ( 2 π s ) , preventing it from being a root. Hence, all the remaining negative even numbers s ∈ − 2 N s \in - 2\mathbb{N} s ∈ − 2 N become the roots of ζ \zeta ζ , which are called trivial roots of the Riemann zeta function . The famous Riemann Hypothesis is a hypothesis about the non-trivial roots, excluding these trivial ones.
Derivation Definition and symmetry of the Riemann Xi function : The function defined as follows, ξ \xi ξ , is called the Riemann Xi function.
ξ ( s ) : = 1 2 s ( s − 1 ) π − s / 2 ζ ( s ) Γ ( s 2 )
\xi (s) := {{ 1 } \over { 2 }} s ( s-1) \pi^{-s/2} \zeta (s) \Gamma \left( {{ s } \over { 2 }} \right)
ξ ( s ) := 2 1 s ( s − 1 ) π − s /2 ζ ( s ) Γ ( 2 s )
ξ ( 1 − s ) = ξ ( s )
\xi ( 1 - s) = \xi (s)
ξ ( 1 − s ) = ξ ( s )
By symmetry,
π − s / 2 Γ ( s 2 ) ζ ( s ) = π − 1 / 2 + s / 2 Γ ( 1 2 − s 2 ) ζ ( 1 − s )
\pi^{-s/2} \Gamma \left( {{ s } \over { 2 }} \right) \zeta (s) = \pi^{-1/2 + s/2} \Gamma \left( {{ 1 } \over { 2 }} - {{ s } \over { 2 }} \right) \zeta (1-s)
π − s /2 Γ ( 2 s ) ζ ( s ) = π − 1/2 + s /2 Γ ( 2 1 − 2 s ) ζ ( 1 − s )
Multiplying both sides by π s / 2 \pi^{s/2} π s /2 ,
Γ ( s 2 ) ζ ( s ) = π − 1 / 2 + s Γ ( 1 2 − s 2 ) ζ ( 1 − s )
\Gamma \left( {{ s } \over { 2 }} \right) \zeta (s) = \pi^{-1/2 + s} \Gamma \left( {{ 1 } \over { 2 }} - {{ s } \over { 2 }} \right) \zeta (1-s)
Γ ( 2 s ) ζ ( s ) = π − 1/2 + s Γ ( 2 1 − 2 s ) ζ ( 1 − s )
Euler’s reflection formula :
Γ ( p ) Γ ( 1 − p ) = π sin ( π p )
\Gamma (p) \Gamma (1-p) = {{ \pi } \over { \sin (\pi p) }}
Γ ( p ) Γ ( 1 − p ) = sin ( π p ) π
When p = s / 2 \displaystyle p = s/2 p = s /2 in Euler’s reflection formula,
Γ ( s / 2 ) Γ ( 1 − s / 2 ) = π sin ( π s / 2 )
\Gamma (s/2) \Gamma (1-s/2) = {{ \pi } \over { \sin (\pi s/2) }}
Γ ( s /2 ) Γ ( 1 − s /2 ) = sin ( π s /2 ) π
Thus,
ζ ( s ) = π − 1 / 2 + s Γ ( 1 2 − s 2 ) ζ ( 1 − s ) 1 π Γ ( 1 − s / 2 ) sin ( π s / 2 ) = π − 3 / 2 + s Γ ( 1 − s 2 ) Γ ( 1 − s 2 ) sin ( π s 2 ) ζ ( 1 − s ) ⋯ ( ∗ )
\begin{align*}
\zeta (s) =& \pi^{-1/2 + s} \Gamma \left( {{ 1 } \over { 2 }} - {{ s } \over { 2 }} \right) \zeta (1-s) {{ 1 } \over { \pi }} \Gamma (1-s/2) \sin (\pi s / 2) &
\\ =& \pi^{-3/2 + s} \Gamma \left( {{ 1 - s } \over { 2 }} \right) \Gamma \left( 1 - {{ s } \over { 2 }} \right) \sin \left( {{ \pi s } \over { 2 }} \right) \zeta (1-s) & \cdots (\ast)
\end{align*}
ζ ( s ) = = π − 1/2 + s Γ ( 2 1 − 2 s ) ζ ( 1 − s ) π 1 Γ ( 1 − s /2 ) sin ( π s /2 ) π − 3/2 + s Γ ( 2 1 − s ) Γ ( 1 − 2 s ) sin ( 2 π s ) ζ ( 1 − s ) ⋯ ( ∗ )
Legendre duplication formula :
Γ ( 2 r ) = 2 2 r − 1 π Γ ( r ) Γ ( 1 2 + r )
\Gamma (2r) = {{2^{2r-1} } \over { \sqrt{ \pi } } } \Gamma \left( r \right) \Gamma \left( {{1} \over {2}} + r \right)
Γ ( 2 r ) = π 2 2 r − 1 Γ ( r ) Γ ( 2 1 + r )
When r = 1 − s 2 \displaystyle r= {{ 1-s } \over { 2 }} r = 2 1 − s in the Legendre duplication formula,
Γ ( 1 − s ) = 2 − s π − 1 / 2 Γ ( 1 − s 2 ) Γ ( 1 − s 2 )
\Gamma (1-s) = 2^{-s} \pi^{-1/2} \Gamma \left( {{ 1-s } \over { 2 }} \right) \Gamma \left( 1- {{ s } \over { 2 }} \right)
Γ ( 1 − s ) = 2 − s π − 1/2 Γ ( 2 1 − s ) Γ ( 1 − 2 s )
Thus, substituting for ( ∗ ) (\ast) ( ∗ ) ,
ζ ( s ) = π − 3 / 2 + s Γ ( 1 − s 2 ) Γ ( 1 − s 2 ) sin ( π s 2 ) ζ ( 1 − s ) = π − 3 / 2 + s 2 s π + 1 / 2 Γ ( 1 − s ) sin ( π s 2 ) ζ ( 1 − s ) = 2 s π s − 1 sin ( π s 2 ) Γ ( 1 − s ) ζ ( 1 − s )
\begin{align*}
\zeta (s) =& \pi^{-3/2 + s} \Gamma \left( {{ 1 - s } \over { 2 }} \right) \Gamma \left( 1 - {{ s } \over { 2 }} \right) \sin \left( {{ \pi s } \over { 2 }} \right) \zeta (1-s)
\\ =& \pi^{-3/2 + s} 2^{s} \pi^{+1/2} \Gamma ( 1-s) \sin \left( {{ \pi s } \over { 2 }} \right) \zeta (1-s)
\\ =& 2^{s} \pi^{s-1} \sin \left( {{ \pi s } \over { 2 }} \right) \Gamma ( 1-s) \zeta (1-s)
\end{align*}
ζ ( s ) = = = π − 3/2 + s Γ ( 2 1 − s ) Γ ( 1 − 2 s ) sin ( 2 π s ) ζ ( 1 − s ) π − 3/2 + s 2 s π + 1/2 Γ ( 1 − s ) sin ( 2 π s ) ζ ( 1 − s ) 2 s π s − 1 sin ( 2 π s ) Γ ( 1 − s ) ζ ( 1 − s )
■