The Riemann xi function was originally defined in a slightly different form, but Edmund Landau redefined it with the lowercase xi ξ and the original Riemann xi function is defined as Ξ(z):=ξ(21+zi) using the uppercase Ξ1.
Theorem
ξ(1−s)=ξ(s)
Meanwhile, the Riemann xi function is symmetric about s=21, which, according to the original definition of the Riemann xi function, could also better represent the symmetry as follows.
Ξ(−z)=Ξ(z)
Γ(x)=∫0∞tx−1e−tdt
From the definition of the Gamma Function, let t=n2πzΓ(x)==∫0∞(n2πz)x−1e−n2πzn2πdzn2π(n2π)x−1∫0∞zx−1e−n2πzdz
Then let x:=2sn−sπ−s/2Γ(2s)=∫0∞z2s−1e−n2πzdz
Taking both sides as ∑n∈N, from the definition of the Riemann Zeta Function, when Re(s)>1ζ(s)π−s/2Γ(2s)===n∈N∑n−sπ−s/2Γ(2s)n∈N∑∫0∞z2s−1e−n2πzdz∫0∞z2s−1n∈N∑e−n2πzdz
By dividing the integration interval into [0,1) and [1,∞) and substituting as in τ:=z1 for [0,1), since dz=τ21dτπ−s/2ζ(s)Γ(2s)======∫0∞z2s−1ϑ(z)dz∫01z2s−1ϑ(z)dz+∫1∞z2s−1ϑ(z)∫1∞τ1−2sϑ(τ1)τ21dτ+∫1∞z2s−1ϑ(z)dz∫1∞τ−1−2sϑ(τ1)dτ+∫1∞z2s−1ϑ(z)dz∫1∞τ−1−2sτϑ(τ)dτ+∫1∞z2s−1ϑ(z)dz∫1∞τ−2s−21ϑ(τ)dτ+∫1∞z2s−1ϑ(z)dz
By expressing the integrand uniformly as dz again
π−s/2ζ(s)Γ(2s)=∫1∞[z−2s−21+z2s−1]ϑ(z)dz
Part 3.
In the above equation, even if the variable is 1−s instead of sπ−(1−s)/2ζ(1−s)Γ(21−s)===∫1∞[z−21−s−21+z21−s−1]ϑ(z)dz∫1∞[z2s−1+z−2s−21]ϑ(z)dzπ−s/2ζ(s)Γ(2s)
Multiplying both sides by 2(1−s)((1−s)−1)=2s(s−1)2(1−s)((1−s)−1)π−(1−s)/2ζ(1−s)Γ(21−s)=2s(s−1)π−s/2ζ(s)Γ(2s)
Expressing this as the Riemann xi function gives
ξ(1−s)=ξ(s)