logo

Orthogonality of Hermite Polynomials 📂Functions

Orthogonality of Hermite Polynomials

Theorem

The Hermite polynomials {Hn}n=0\left\{ H_{n} \right\}_{n=0}^{\infty} are orthogonal with respect to the weight function w(x)=ex2w(x)=e^{-x^{2}} over the interval (,)(-\infty, \infty).

HnHmex2=ex2Hn(x)Hm(x)dx=π2nn!δnm \braket{ H_{n} | H_{m} }_{e^{-x^{2}}} =\int_{-\infty}^{\infty}e^{-x^{2}}H_{n}(x)H_{m}(x)dx=\sqrt{\pi}2^{n}n!\delta_{nm}

Here, δnm\delta_{nm} is the Kronecker delta.

Proof

Case 1: n=mn=m

Let’s denote the differential operator as D=ddxD = \dfrac{d}{dx}.

ex2Hn(x)Hn(x)dx \int_{-\infty}^{\infty} e^{-x^{2}}H_{n}(x)H_{n}(x)dx

Hermite polynomials

Hn(x)=(1)nex2dndxnex2=(1)nex2Dnex2 H_{n}(x) = (-1)^{n}e^{x^{2}}\frac{d^{n}}{dx^{n}}e^{-x^{2}} = (-1)^{n}e^{x^{2}}D^{n}e^{-x^{2}}

If we solve the front part Hn(x)H_{n}(x) of the above equation, it looks like this.

ex2(1)nex2[Dnex2]Hn(x)dx=(1)n[Dnex2]Hn(x)dx \begin{align*} \int_{-\infty}^{\infty} e^{-x^{2}}(-1)^{n}e^{x^{2}}\left[D^{n}e^{-x^{2}} \right]H_{n}(x)dx &= \int_{-\infty}^{\infty} (-1)^{n}\left[D^{n}e^{-x^{2}} \right]H_{n}(x)dx \end{align*}

Solving the equation partially, we get the following equation.

(1)n[Dnex2]Hn(x)dx=[(1)n(Dn1ex2)Hn(x)](1)n[Dn1ex2]Hn(x)dx \begin{align*} &\int_{-\infty}^{\infty} (-1)^{n}\left[D^{n}e^{-x^{2}} \right]H_{n}(x)dx \\ &=\left[ (-1)^{n}\left(D^{n-1}e^{-x^{2}}\right)H_{n}(x) \right]_{-\infty}^{\infty}-\int_{-\infty}^{\infty}(-1)^{n}\left[ D^{n-1}e^{-x^{2}}\right]H^{\prime}_{n}(x)dx \tag{1} \end{align*}

Here, since the first term is limx±Dn1ex2=0\lim \limits_{x\rightarrow \pm\infty}D^{n-1}e^{-x^{2}}=0, it equals 00. The reason why this limit converges to 00 is because for any nn, it is expressed as

Dnex2=p(x)ex2 D^{n}e^{-x^{2}}=p(x)e^{-x^{2}} .

Here, p(x)p(x) is an arbitrary polynomial. When x±x \rightarrow \pm \infty, the speed of convergence to 00 is much faster than the divergence rate of the polynomial, thus the limit converges to 00.

Recurrence relation of Hermite polynomials Hn(x)=2nHn1(x) H_{n}^{\prime}(x) =2nH_{n-1}(x)

By the recurrence relation of the Hermite polynomials, (1)(1) is as follows.

2n(1)n[Dn1ex2]Hn1(x)dx -2n\int_{-\infty}^{\infty}(-1)^{n}\left[ D^{n-1}e^{-x^{2}} \right]H_{n-1}(x)dx

By the same logic as just now, performing partial integration once more, we obtain the following.

(1)222n(n1)(1)n[Dn2ex2]Hn2(x)dx (-1)^{2}2^{2}n(n-1)\int_{-\infty}^{\infty}(-1)^{n}\left[ D^{n-2}e^{-x^{2}} \right]H_{n-2}(x)dx

Therefore, integrating nn times, we obtain the following equation.

(1)n2nn!(1)nex2H0(x)dx (-1)^{n}2^{n}n!\int_{-\infty}^{\infty}(-1)^{n}e^{-x^{2}}H_{0}(x)dx

Since it is H0(x)=1H_{0}(x)=1, it is summarized as follows.

2nn!ex2dx 2^{n}n!\int_{-\infty}^{\infty}e^{-x^{2}}dx

The above integral is the Gaussian integral, and its value is π\sqrt{\pi}. Thus, we get the following.

ex2Hn(x)Hn(x)dx=π2nn! \int_{-\infty}^{\infty} e^{-x^{2}}H_{n}(x)H_{n}(x)dx=\sqrt{\pi}2^{n}n!

Case 2: nmn\ne m

Without loss of generality, let’s assume n>mn \gt m.

ex2Hn(x)Hm(x)dx \int_{-\infty}^{\infty}e^{-x^{2}}H_{n}(x)H_{m}(x)dx

Expressing only Hn(x)H_{n}(x) from here looks as follows.

ex2(1)nex2[Dnex2]Hm(x)dx=(1)n[Dnex2]Hm(x)dx \int_{-\infty}^{\infty}e^{-x^{2}}(-1)^{n}e^{x^{2}}\left[D^{n}e^{-x^{2}}\right]H_{m}(x)dx=\int_{-\infty}^{\infty}(-1)^{n}\left[D^{n}e^{-x^{2}}\right]H_{m}(x)dx

Using the same method as in the case of n=mn=m, performing mm times partial integration gives us the following equation.

(1)n+m2mm![Dnmex2]1dx (-1)^{n+m}2^{m}m!\int_{-\infty}^{\infty}\left[ D^{n-m}e^{-x^{2}} \right]\cdot 1 dx

Integrating once more gives the following.

(1)n+m2mm![Dnmex2]1dx=(1)n+m2mm!([Dnm1ex2]+2(m+1)[Dnm1ex2]0dx) \begin{align*} &(-1)^{n+m}2^{m}m!\int_{-\infty}^{\infty}\left[ D^{n-m}e^{-x^{2}} \right]\cdot 1 dx \\ &= (-1)^{n+m}2^{m}m!\left(\left[D^{n-m-1}e^{-x^{2}} \right]_{-\infty}^{\infty}+2(m+1)\int_{-\infty}^{\infty}\left[ D^{n-m-1}e^{-x^{2}}\right]\cdot 0 dx \right) \end{align*}

The first term, as explained in the above proof, equals 00, and the second term also equals 00. Therefore, we obtain the following.

ex2Hn(x)Hm(x)dx=0,nm \int_{-\infty}^{\infty}e^{-x^{2}}H_{n}(x)H_{m}(x)dx=0, \quad n \ne m