logo

Jacobi Theta Function 📂Functions

Jacobi Theta Function

Definition

The function defined as follows ϑ\vartheta is called the Jacobi theta Function. ϑ(τ):=nZeπn2τ \vartheta (\tau) := \sum_{n \in \mathbb{Z}} e^{-\pi n^{2} \tau }

Description

While Jacobi functions can originally be more generally defined, it is common to use a special form of them depending on the needs. Note that the Jacobi theta function introduced here does not cover all contexts in its exact meaning.

The following property is especially used in deriving equations that are central to the study of the Riemann zeta function.

Theorem

ϑ(τ)=1τϑ(1τ) \vartheta ( \tau ) = \sqrt{ {{ 1 } \over { \tau }}} \vartheta \left( {{ 1 } \over { \tau }} \right)

Proof

By defining ff as f(n):=eπn2τ f(n) := e^{-\pi n^{2} \tau} and then ϑ(τ)=nZeπn2x=nZf(n) \begin{align*} \vartheta ( \tau ) =& \sum_{n \in \mathbb{Z}} e^{ - \pi n^{2} x } \\ =& \sum_{n \in \mathbb{Z}} f (n) \end{align*}

Poisson summation formula: nZf(n)=kZf^(k) \sum_{n \in \mathbb{Z}} f(n) = \sum_{k \in \mathbb{Z}} \widehat{f}(k)

According to the Poisson summation formula ϑ(τ)=nZf(n)=kZf^(k)=kZF[eπτn2](k) \begin{align*} \vartheta ( \tau ) =& \sum_{n \in \mathbb{Z}} f (n) \\ =& \sum_{k \in \mathbb{Z}} \widehat{f}(k) \\ =& \sum_{k \in \mathbb{Z}} \mathcal{F} \left[ e^{- \pi \tau n^{2}} \right] (k) \end{align*}

Fourier transform of the Gaussian function: (Ff)(γ)=F[eAx2](γ)=πAeπ2γ2A \left( \mathcal{F} f \right) (\gamma) = \mathcal{F} \left[ e^{-A x^{2}} \right] (\gamma) = \sqrt{{ \pi } \over { A }} e^{ - {{ \pi^{2} \gamma^{2} } \over { A }}}

Considering x=nx = n and A=πτA = \pi \tau, the Fourier transform of the Gaussian function eπτn2e^{ -\pi \tau n^{2}} gives γ=k\gamma = k as ϑ(τ)=kZF[eπτn2](k)=kZππτeπ2k2πτ=1τkZeπk21τ=1τϑ(1τ) \begin{align*} \vartheta (\tau) =& \sum_{k \in \mathbb{Z}} \mathcal{F} \left[ e^{- \pi \tau n^{2}} \right] (k) \\ =& \sum_{k \in \mathbb{Z}} \sqrt{{ \pi } \over { \pi \tau }} e^{ - {{ \pi^{2} k^{2} } \over { \pi \tau }}} \\ =& \sqrt{{{ 1 } \over { \tau }}} \sum_{k \in \mathbb{Z}} e^{-\pi k^{2} {{ 1 } \over { \tau }}} \\ =& \sqrt{{{ 1 } \over { \tau }}} \vartheta \left( {{ 1 } \over { \tau }} \right) \end{align*}