logo

Derivation of the Poisson Summation Formula 📂Distribution Theory

Derivation of the Poisson Summation Formula

Formula

Let f:RCf : \mathbb{R} \to \mathbb{C} be a Schwartz function. Then, nZf(n)=kZf^(k) \sum_{n \in \mathbb{Z}} f(n) = \sum_{k \in \mathbb{Z}} \widehat{f}(k)


  • Schwartz functions fC(R)f \in C^{\infty}(\mathbb{R}) are functions whose magnitude f(x)\left| f (x) \right| converges rapidly to 00 when x±x \to \pm \infty.
  • For ff and γR\gamma \in \mathbb{R}, f^(γ)\widehat{f}(\gamma) represents the following Fourier transform: f^(γ)=Rf(x)e2πiγxdx \widehat{f} ( \gamma ) = \int_{\mathbb{R}} f(x) e^{-2 \pi i \gamma x} dx

Proof1

Let F(x):=nZf(x+n) F(x) := \sum_{n \in \mathbb{Z}} f ( x + n ) then FF is 11-periodic and the Fourier coefficients F^k\widehat{F}_{k} can be calculated as follows: F^k=01nZf(x+n)e2πikzdx=nZ01f(x+n)e2πikzdx=nZnn+1f(x)e2πikzdx=Rf(x)e2πikzdx=f^(k) \begin{align*} \widehat{F}_{k} &= \int_{0}^{1} \sum_{n \in \mathbb{Z}} f(x+n) e^{-2\pi i k z } dx \\ =& \sum_{n \in \mathbb{Z}} \int_{0}^{1} f(x+n) e^{-2\pi i k z } dx \\ =& \sum_{n \in \mathbb{Z}} \int_{n}^{n+1} f(x) e^{-2\pi i k z } dx \\ =& \int_{\mathbb{R}} f(x) e^{-2\pi i k z } dx \\ =& \widehat{f} (k) \end{align*} Following the Fourier expansion of FF, we get nZf(x+n)=F(x)=kZF^keikx=kZf^(k)eikx \sum_{n \in \mathbb{Z}} f(x+n) = F(x) = \sum_{k \in \mathbb{Z}} \widehat{F}_{k} e^{i k x } = \sum_{k \in \mathbb{Z}} \widehat{f} (k) e^{i k x} By substituting x=0x = 0, the following is obtained: nZf(n)=kZf^(k) \sum_{n \in \mathbb{Z}} f(n) = \sum_{k \in \mathbb{Z}} \widehat{f}(k)