logo

The eigenfunctions of the angular momentum operator are spherical harmonics. 📂Quantum Mechanics

The eigenfunctions of the angular momentum operator are spherical harmonics.

Summary

The angular momentum operator L2L^{2} and LzL_{z} have simultaneous eigenfunctions determined by constants ll, mm ,m\ket{\ell, m}.

L2,m=2(+1),mLz,m=m,m \begin{align*} L^{2}\ket{\ell, m} &= \hbar^{2}\ell(\ell+1)\ket{\ell, m} \\ L_{z}\ket{\ell, m} &= m\hbar\ket{\ell, m} \end{align*}

Here, the eigenfunction of the angular momentum operator ,m\ket{\ell, m} is actually spherical harmonics YlmY_{l}^{m}.

,m=Ylm \ket{\ell, m} = Y_{l}^{m}

Proof

In spherical coordinates, the angular momentum operator LzL_{z} is as follows:

Lz=iϕ L_{z} = -\i\hbar\frac{\partial}{\partial \phi}

Also, the ladder operator of angular momentum is as follows:

L+L=2(2θ2+cotθθ+cot2θ2ϕ2+iϕ) L_{+}L_{-} = -\hbar ^{2} \left( \frac{\partial^{2}}{\partial \theta^{2}} + \cot \theta \frac{\partial}{\partial \theta}+\cot ^{2}\theta \frac{\partial^{2}}{\partial \phi^{2}} +\i\frac{\partial}{\partial \phi}\right)

Then, since L2=L+L+Lz2LzL^{2} = L_{+}L_{-} + L_{z}^{2} - \hbar L_{z}, we obtain the following equation.

L2=2(2θ2+cotθθ+cot2θ2ϕ2+iϕ)+(iϕ)2(iϕ)=2(2θ2+cotθθ+cot2θ2ϕ2+iϕ)22ϕ2+i2ϕ=2(2θ2+cotθθ+cot2θ2ϕ2+2ϕ2)=2(1sinθθ(sinθθ)+(cot2+1)θ2ϕ2)=2(1sinθθ(sinθθ)+1sin2θ2ϕ2) \begin{align*} L^{2} &= -\hbar ^{2} \left( \frac{\partial^{2}}{\partial \theta^{2}} + \cot \theta \frac{\partial}{\partial \theta}+\cot ^{2}\theta \frac{\partial^{2}}{\partial \phi^{2}} +\i\frac{\partial}{\partial \phi}\right) + \left( -\i\hbar\frac{\partial}{\partial \phi} \right)^{2} -\hbar \left( -\i\hbar\frac{\partial}{\partial \phi} \right)\\ &= -\hbar ^{2} \left( \frac{\partial^{2}}{\partial \theta^{2}} + \cot \theta \frac{\partial}{\partial \theta}+\cot ^{2}\theta \frac{\partial^{2}}{\partial \phi^{2}} + \i\frac{\partial}{\partial \phi}\right) - \hbar ^{2}\frac{\partial^{2}}{\partial \phi^{2}} + \i \hbar ^{2}\frac{\partial}{\partial \phi} \\ &= -\hbar ^{2} \left( \frac{\partial^{2}}{\partial \theta^{2}} + \cot \theta \frac{\partial}{\partial \theta}+\cot ^{2}\theta \frac{\partial^{2}}{\partial \phi^{2}} + \frac{\partial^{2}}{\partial \phi^{2}}\right) \\ &= -\hbar ^{2} \left( \dfrac{1}{\sin\theta} \dfrac{\partial }{\partial \theta} \left( \sin\theta \frac{\partial}{\partial \theta} \right) + (\cot ^{2} + 1) \theta \frac{\partial^{2}}{\partial \phi^{2}} \right) \\ &= -\hbar ^{2} \left( \dfrac{1}{\sin\theta} \dfrac{\partial }{\partial \theta} \left( \sin\theta \frac{\partial}{\partial \theta} \right) + \dfrac{1}{\sin^{2}\theta}\frac{\partial^{2}}{\partial \phi^{2}} \right) \\ \end{align*}

Applying this to the eigenfunctions,

L2,m=2[1sinθθ(sinθθ)+1sin2θ2ϕ2],m=(+1)2,m L^{2}\ket{\ell, m}=-\hbar ^{2}\left[ \frac{1}{\sin \theta}\frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta} \right)+\frac{1}{\sin ^{2} \theta}\frac{\partial^{2}}{ \partial \phi^{2} } \right]\ket{\ell, m} = \ell(\ell + 1)\hbar^{2}\ket{\ell, m}

Therefore, we obtain the following.

[1sinθθ(sinθθ)+1sin2θ2ϕ2],m=(+1),m \begin{align*} && \left[ \frac{1}{\sin \theta}\frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta} \right)+\frac{1}{\sin ^{2} \theta}\frac{\partial^{2}}{ \partial \phi^{2} } \right]\ket{\ell, m} &= -\ell(\ell + 1)\ket{\ell, m} \\ % \implies&& \left[ \frac{1}{\sin \theta}\frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta} \right)+\frac{1}{\sin ^{2} \theta}\frac{\partial^{2}}{ \partial \phi^{2} } + \ell(\ell + 1) \right]\ket{\ell, m} &= 0 \end{align*}

However, assuming that it can be separated by variables as ,m=Θ(θ)Φ(ϕ)\ket{\ell, m} = \Theta(\theta)\Phi(\phi), we find that it is exactly the same as the differential equation that the spherical harmonics satisfy.

[1sinθθ(sinθθ)+1sin2θ2ϕ2]Θ(θ)Φ(ϕ)=(+1)Θ(θ)Φ(ϕ)    Φsinθddθ(sinθdΘdθ)+Θsin2θd2Φdϕ2=(+1)ΘΦ    1Θsinθddθ(sinθdΘdθ)+1Φsin2θd2Φdϕ2=(+1) \begin{align*} && \left[ \frac{1}{\sin \theta}\frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta} \right)+\frac{1}{\sin ^{2} \theta}\frac{\partial^{2}}{ \partial \phi^{2} } \right]\Theta(\theta)\Phi(\phi) &= -\ell(\ell + 1)\Theta(\theta)\Phi(\phi) \\ \implies && \frac{\Phi}{\sin \theta}\frac{d}{d \theta}\left(\sin \theta \frac{d \Theta}{d \theta} \right) + \frac{\Theta}{\sin ^{2} \theta}\frac{d^{2} \Phi}{d \phi^{2} } &= -\ell(\ell + 1)\Theta\Phi \\ \implies && \frac{1}{\Theta \sin \theta}\frac{d}{d \theta}\left(\sin \theta \frac{d \Theta}{d \theta} \right) + \frac{1}{\Phi \sin ^{2} \theta}\frac{d^{2} \Phi}{d \phi^{2} } &= -\ell(\ell + 1) \\ \end{align*}

Hence, the eigenfunction ,m\ket{\ell, m} of the angular momentum operator is actually the spherical harmonics YlmY_{l}^{m}.