logo

Series Solutions to the Airy Differential Equation 📂Odinary Differential Equations

Series Solutions to the Airy Differential Equation

Definition

The following differential equation is called the Airy differential equation.

yxy=0,<x< y^{\prime \prime}-xy=0,\quad -\infty<x<\infty

Explanation

The name originates from the British astronomer George Biddell Airy.

It is also called the Stokes equation.

Solution

Since the coefficient of yy^{\prime \prime} is 11, all points are ordinary points. Among them, let’s find the power series solution around x=0x=0. Assume that the solution of the Airy equation is as follows and converges in the interval x<ρ|x|<\rho.

y=n=0anxn=a0+a1x+a2x2+ y= \sum \limits _{n=0} ^{\infty} a_{n} x^n=a_{0}+a_{1}x+a_2x^2+\cdots

Then yy^{\prime \prime} is

y= n=2n(n1)anxn2= n=0(n+2)(n+1)an+2xn= 21a2+32a3x+43a4x2+ \begin{align*} y^{\prime \prime} =&\ \sum \limits_{n=2}^\infty n(n-1)a_{n}x^{n-2} \\ =&\ \sum \limits_{n=0}^\infty (n+2)(n+1)a_{n+2}x^n \\ =&\ 2\cdot 1 a_2+ 3\cdot2 a_{3}x +4\cdot 3 a_{4}x^2+\cdots \end{align*}

Substituting into the differential equation and matching the order of xx, we get the following.

yxy= n=0(n+2)(n+1)an+2xnn=0anxn+1= n=1(n+3)(n+2)an+3xn+1n=0anxn+1= 2a2+n=0(n+3)(n+2)an+3xn+1n=0anxn+1= 2a2+n=0[(n+3)(n+2)an+3an]xn+1= 0 \begin{align*} y^{\prime \prime}-xy =&\ \sum \limits_{n=0}^{\infty} (n+2)(n+1)a_{n+2}x^{n}-\sum \limits_{n=0}^{\infty}a_{n}x^{n+1} \\ =&\ \sum \limits_{n=-1}^{\infty} (n+3)(n+2)a_{n+3}x^{n+1}-\sum \limits_{n=0}^{\infty}a_{n}x^{n+1} \\ =&\ 2a_{2}+\sum \limits_{n=0}^{\infty} (n+3)(n+2)a_{n+3}x^{n+1}-\sum \limits_{n=0}^{\infty}a_{n}x^{n+1} \\ =&\ 2a_{2} + \sum \limits_{n=0}^{\infty } \left[ (n+3)(n+2)a_{n+3}-a_{n} \right]x^{n+1} \\ =&\ 0 \end{align*}

For any xx to always hold, all coefficients must be 00. Therefore,

a2=0 a_{2}=0

Arranging the recursion formula of the series coefficients for an+3a_{n+3}, we get the following.

an+3=an(n+3)(n+2) a_{n+3}=\frac{a_{n}}{(n+3)(n+2)}

First, for n=0n=0, we get the following.

a3= 132a0a6= 165a3=16532a0a9= 198a6=1986532a0 \begin{align*} a_{3} =&\ \frac{1}{3\cdot 2}a_{0} \\ a_{6} =&\ \frac{1}{6\cdot 5}a_{3} =\frac{1}{6\cdot 5 \cdot 3 \cdot 2}a_{0} \\ a_{9} =&\ \frac{1}{9\cdot 8}a_{6} =\frac{1}{9\cdot 8 \cdot 6\cdot 5 \cdot 3 \cdot 2}a_{0} \\ \vdots & \end{align*}

For n=1n=1, we get the following.

a4= 143a1a7= 176a4=17643a1a10= 1109a7=11097643a1 \begin{align*} a_{4} =&\ \frac{1}{4\cdot 3}a_{1} \\ a_{7} =&\ \frac{1}{7\cdot 6}a_{4} =\frac{1}{7\cdot 6 \cdot 4 \cdot 3}a_{1} \\ a_{10} =&\ \frac{1}{10\cdot 9}a_{7} =\frac{1}{10\cdot 9 \cdot 7\cdot 6 \cdot 4 \cdot 3}a_{1} \\ \vdots & \end{align*}

For n=2n=2, we get the following.

a5= 154a2=0a8= 187a5=0a11= 11110a8=0 \begin{align*} a_{5} =&\ \frac{1}{5\cdot 4}a_{2}=0 \\ a_{8} =&\ \frac{1}{8\cdot 7}a_{5}=0 \\ a_{11} =&\ \frac{1}{11\cdot 10}a_{8} =0 \\ \vdots & \end{align*}

Therefore, the general solution of the Airy differential equation is as follows.

y= n=0anxn= a0+a1x+a3x3+a4x4+a6x6+a7x7+= a0+a1x+132a0x3+143a1x4+16532a0x6+17643a1x7= a0(1+132x3+16532x6+)+a1(x+143x4+17643x7+) \begin{align*} y =&\ \sum \limits_{n=0}^{\infty}a_{n}x^{n} \\ =&\ a_{0}+a_{1}x+a_{3}x^{3}+a_{4}x^{4}+a_{6}x^{6}+a_{7}x^{7}+\cdots \\ =&\ a_{0}+a_{1}x+\frac{1}{3\cdot 2}a_{0}x^{3}+\frac{1}{4\cdot 3}a_{1}x^{4}+\frac{1}{6\cdot 5 \cdot 3 \cdot 2}a_{0}x^{6}+\frac{1}{7\cdot 6 \cdot 4 \cdot 3}a_{1}x^{7} \\ =&\ a_{0}\left( 1+\frac{1}{3\cdot 2}x^{3}+\frac{1}{6\cdot 5 \cdot 3 \cdot 2}x^{6} + \cdots \right)+a_{1}\left( x+\frac{1}{4\cdot 3}x^{4}+\frac{1}{7\cdot 6\cdot 4\cdot 3}x^{7}+\cdots \right) \end{align*}